如[5]中,LET(γ,ϕ)表示一个组装空间(AS)或组件子空间。为了简化符号的利益,可以将(γ,ϕ)称为γ,而ϕ给出的边缘标记不相关。来自[5],我们可以说Cγ(x)表示组装空间γ中对象X的组装索引。令S =(γ,φ,f)是一个无限的组装空间,其中每个组装空间γ∈γ是有限的,φ是每个γ的相应边缘标签ϕγ的集合,f =(f 1,。。。,f n,。。。 )是嵌入的无限序列(每个嵌入也是[5]中所示的装配图),最终会生成s。也就是说,每个f i:{γi}⊆γ→{γi +1}⊆γ是一种特定类型的组装图,将单个组装子空间嵌入较大的组件子空间中,从而使所得的嵌套组装子空间的序列定义了一个总阶,其中 s
2020; Jin等。,2020b; Ayoub等。,2020年; Kakade等。,2020年; Du等。,2021)。特别是,对于有限的状态空间,神经功能近似值取得了显着的成功(Mnih等人。,2015年; Berner等。,2019年; Arulkumaran等。,2019年),而线性函数近似器理论上变得更好地理解(Yang和Wang,2020; Jin等人。,2020b; Ayoub等。,2020年; Kakade等。,2020年; Du等。,2021)。相比之下,尽管在实践中普遍存在,但在部分观察到的马尔可夫决策过程中的强化学习(POMDPS)较少地研究(Cassandra等人,1996; Hauskrecht和Fraser,2000年; Brown and Sandholm,2018年; Ra i Qerty等。,2011年)。更具体地,部分可观察性构成了统计和计算。从统计的角度来看,由于缺乏马尔可夫财产,预测未来的奖励,观察或国家是一项挑战。尤其是,预测未来通常涉及推断国家的分布(也称为信仰状态)或其功能作为历史的摘要,即使假设(observation)发射和(状态)过渡内核也已知(Vlassis etal。 ,2012年; Golowich等。 ,2022)。 同时,学习发射和过渡内核面临因果推理通常遇到的各种问题(Zhang and Bareinboim,2016年)。 ,2021)。 ,2020a)。,2012年; Golowich等。,2022)。同时,学习发射和过渡内核面临因果推理通常遇到的各种问题(Zhang and Bareinboim,2016年)。,2021)。,2020a)。例如,它们通常是不可实现的(Kallus等人。即使假设它们是能够识别的,它们的估计可能需要一个样本量,该样本量在地平线和维度上成倍缩小(Jin等人。即使在评估政策方面,这种统计挑战也已经令人难以置信(Nair和Jiang,2021; Kallus等人。,2021; Bennett和Kallus,2021),构成了政策优化的基础。从计算角度来看,众所周知,策略优化通常是棘手的(Vlassis et al。,2012年; Golowich等。,2022)。此外,有限的观察和状态空间扩大了统计和计算挑战。另一方面,大多数现有结果仅限于表格设置(Azizzadenesheli等人。,2016年; Guo等。,2016年; Jin等。,2020a; Xiong等。,2021),其中观察和状态空间是有限的。在本文中,我们研究了POMDP中的线性函数近似,以解决有限观察和状态空间所扩增的实力挑战。尤其是我们的贡献是四倍。首先,我们定义了具有线性结构的一类POMDP,并确定了针对样品良好的增强学习的不良调节措施。这样的不良调节措施对应于表格设置中的重复(Jin等人,2020a)。第二,我们提出了一种增强学习算法(OP-TENET),该算法适用于任何POMDP承认上述线性结构。此外,我们在操作装置中使用最小值优化公式,以便即使数据集较大,也可以在计算功能庄园中实现算法。第三,从理论上讲,我们证明了Op -Tenet在o(1 /ǫ2)情节中达到了最佳政策。尤其是样品复杂性在线性结构的固有维度上缩放,并且是观测和状态空间大小的独立性。第四,我们的算法和分析基于新工具。 特别是,op-tenet的样本效率是由se- 启用的第四,我们的算法和分析基于新工具。特别是,op-tenet的样本效率是由se-
靶标介导药物处置 (TMDD) 是一种以药物与靶标分子高亲和力结合为特征的现象,这会显著影响药物在生物体内的药代动力学特征。综合 TMDD 模型描述了这种相互作用,但如果缺乏靶标或其复合物的具体浓度数据,它可能会变得过于复杂且计算量巨大。因此,引入了采用准稳态近似 (QSSA) 的简化 TMDD 模型;然而,这些模型产生准确结果的确切条件需要进一步阐明。在这里,我们建立了三个简化 TMDD 模型的有效性:用标准 QSSA 简化的 Michaelis-Menten 模型 (mTMDD)、用总 QSSA 简化的 QSS 模型 (qTMDD) 和总 QSSA 的一阶近似 (pTMDD)。具体而言,我们发现 mTMDD 仅适用于初始药物浓度大大超过总目标浓度的情况,而 qTMDD 则适用于所有药物浓度。值得注意的是,pTMDD 提供了一种比 qTMDD 更简单、更快速的替代方案,并且比 mTMDD 具有更广泛的适用性。这些发现已通过抗体-药物偶联物真实世界数据得到证实。我们的研究结果提供了一个框架,用于选择合适的简化 TMDD 模型,同时确保准确性,从而可能增强药物开发并促进更安全、更个性化的治疗。
摘要 父母的做法会影响孩子的体重和 BMI,甚至可能与肥胖的高患病率有关。因此,本研究旨在利用人工智能评估哥伦比亚布卡拉曼加父母的喂养孩子行为与学龄前儿童体重超重之间的关系。2017 年 9 月至 12 月期间进行了一项横断面研究。样本包括在布卡拉曼加和大都市地区哥伦比亚家庭幸福研究所下属儿童发展机构就读的学龄前儿童(n 384)。结果变量是体重超重,主要独立变量是父母的喂养方式。分析的混杂变量包括社会人口特征、食物消费和儿童的体力活动。所有用于人体测量的设备都经过校准。使用逻辑回归预测父母做法对儿童体重超重的影响,并使用 AUC 衡量表现。与儿童超重最相关的父母行为包括用食物来控制他们的行为和限制他们提供的食物量(用食物来控制情绪(OR 1·77;95% CI 1·45,1·83;P = 0·034)和鼓励孩子少吃(OR 1·22;95% CI 1·14,1·89;P = 0·045))。与喂养有关的育儿习惯被发现是儿童超重的重要预测因素。这项研究的结果对公共卫生具有重要意义,因为它是针对学龄前儿童父母的营养教育干预措施设计的基线。
图稀疏化是大量算法的基础,从切割问题的近似算法到图拉普拉斯算子的线性系统求解器。在其最强形式中,“谱稀疏化”将边数减少到节点数的近似线性,同时近似地保留图的切割和谱结构。在这项工作中,我们展示了谱稀疏化及其许多应用的多项式量子加速。具体而言,我们给出了一种量子算法,给定一个具有 n 个节点和 m 条边的加权图,在亚线性时间内输出 ϵ -谱稀疏器的经典描述 e O ( √ mn/ϵ )。这与最佳经典复杂度 e O ( m ) 形成对比。我们还证明我们的量子算法在多对数因子范围内是最优的。该算法建立在一系列关于稀疏化、图扩展器、最短路径量子算法和 k 向独立随机字符串的有效构造方面的现有成果之上。我们的算法意味着解决拉普拉斯系统和近似一系列切割问题(例如最小切割和最稀疏切割)的量子加速。
加固学习的成功(RL)至关重要地取决于有效的功能,在处理复杂的地面模型时。现有的样本效率RL算法主要采用三种方法来近似:基于策略,基于价值和基于模型的方法。How- ever, in the face of model misspecification—a disparity between the ground-truth and op- timal function approximators— it is shown that policy-based approaches can be robust even when the policy function approximation is under a large locally-bounded misspecifica- tion error, with which the function class may exhibit a Ω(1) approximation error in spe- cific states and actions, but remains small on average within a policy-induced state 分配。然而,是否可以通过基于价值和基于模型的方法来实现类似的鲁棒性,尤其是在常规函数近似中,这仍然是一个空旷的问题。
• 警告:我对这个主题知之甚少。我所知道的大部分内容来自 2022 年 6 月 H. B¨olskei 教授在巴黎拉格朗日中心的一门讲座课程。 • “深度学习”基于函数分析中的一个简单想法:用“组合近似”取代经典的“叠加近似” • “叠加近似”的含义:通过给定特殊函数族元素的线性组合来近似函数(在给定的函数空间中)(例如:某些希尔伯特基,如傅里叶特征族)。 • “组合近似”的含义:通过属于简单特殊类的函数的(有限但任意长的)复合函数来近似函数(在 fd 线性空间的某个紧子空间上)。 • 实践中发现的事实:组合近似被证明更有效!
Le 还展示了该方法如何应用于各种应用,包括具有单个和多个磁场的量子计量学以及应用于复杂多体系统的哈密顿断层扫描。他还将新方法与精确的理论方法和另一种近似模型 Suzuki-Trotter 进行了细致的比较。尽管该方法与理论方法非常接近,但 Suzuki-Trotter 近似值偏离了真实值。增强 Suzuki-Trotter 近似的结果需要对 Suzuki-Trotter 步骤进行无限细分。
hedin的方程式提供了一条优雅的途径,可以通过一组非线性方程式的自洽迭代来计算确切的单体绿色功能(或传播器)。其一阶近似(称为GW)对应于环图的重新介绍,并且在物理和化学方面已显示出非常成功的。通过引入顶点校正,尽管具有挑战性,可以进行系统的改进。 考虑到异常的繁殖器和外部配对电位,我们得出了一组新的自洽的封闭方程组,等于著名的Hedin方程,但作为一阶近似粒子粒子(PP)t -matrix近似值,在其中执行梯子图的重置。 通过考虑低阶PP顶点校正,HedIn方程的PP版本提供了一种系统地超越T -Matrix近似的方法。可以进行系统的改进。考虑到异常的繁殖器和外部配对电位,我们得出了一组新的自洽的封闭方程组,等于著名的Hedin方程,但作为一阶近似粒子粒子(PP)t -matrix近似值,在其中执行梯子图的重置。通过考虑低阶PP顶点校正,HedIn方程的PP版本提供了一种系统地超越T -Matrix近似的方法。
我们解决了为经典广播渠道编码的问题,该问题需要通过在广播频道上发送固定数量的消息来最大化成功概率。对于[1] a(1- e-e-1)在多项式时间内运行的[1] A(1- e-e-1)中发现的Barman和Fawzi的,Barman和Fawzi 表明,实现严格的更好近似值率是NP-HARD。 此外,这些算法结果是它们在对点对点通道的不信号辅助方面建立的局限性的核心。 自然要询问广播通道是否存在类似的结果,并利用通道编码问题的近似算法与非信号辅助能力区域之间的链接。 在这项工作中,我们在广播渠道的算法方面和非信号辅助助理区域做出了一些贡献。 对于确定性广播渠道的类别,我们描述了在多项式时间内运行的A(1- e -e -1)2- approximation算法,并且我们表明该类别的容量区域在有或没有非信号辅助的情况下相同。 最后,我们表明,在价值查询模型中,对于一般广播通道编码问题,我们无法在多项式时间内实现比ω1√m更好的近似值,其中M的大小是通道的一个输出之一。,Barman和Fawzi 表明,实现严格的更好近似值率是NP-HARD。 此外,这些算法结果是它们在对点对点通道的不信号辅助方面建立的局限性的核心。 自然要询问广播通道是否存在类似的结果,并利用通道编码问题的近似算法与非信号辅助能力区域之间的链接。 在这项工作中,我们在广播渠道的算法方面和非信号辅助助理区域做出了一些贡献。 对于确定性广播渠道的类别,我们描述了在多项式时间内运行的A(1- e -e -1)2- approximation算法,并且我们表明该类别的容量区域在有或没有非信号辅助的情况下相同。 最后,我们表明,在价值查询模型中,对于一般广播通道编码问题,我们无法在多项式时间内实现比ω1√m更好的近似值,其中M的大小是通道的一个输出之一。表明,实现严格的更好近似值率是NP-HARD。此外,这些算法结果是它们在对点对点通道的不信号辅助方面建立的局限性的核心。自然要询问广播通道是否存在类似的结果,并利用通道编码问题的近似算法与非信号辅助能力区域之间的链接。在这项工作中,我们在广播渠道的算法方面和非信号辅助助理区域做出了一些贡献。对于确定性广播渠道的类别,我们描述了在多项式时间内运行的A(1- e -e -1)2- approximation算法,并且我们表明该类别的容量区域在有或没有非信号辅助的情况下相同。最后,我们表明,在价值查询模型中,对于一般广播通道编码问题,我们无法在多项式时间内实现比ω1√m更好的近似值,其中M的大小是通道的一个输出之一。