针对多用户第五代应用,提出了一种非常规的准模块化基站相控阵架构综合技术。通过在最佳不规则阵列的元素处保持均匀的幅度和线性前进的相位,可以实现功率高效的旁瓣抑制,从而有效地减轻用户间的干扰。布局不规则性是在阵列切片内实现的,该切片以旋转方式重复。采用顺序旋转技术来获得模块化并改善圆极化特性。使用改进的 k 均值聚类算法来形成最佳子阵列。仿真结果表明,所提出的准模块化拓扑在旁瓣性能和集成阵列设计复杂性之间提供了良好的折衷。
摘要 CRISPR-Cas 免疫系统的一个标志是 CRISPR 阵列,这是一种由短重复序列(“重复”)和短可变序列(“间隔区”)组成的基因组位点。CRISPR 阵列被转录并加工成单个 CRISPR RNA,每个 RNA 都包含一个间隔区,并将 Cas 蛋白引导至入侵核酸中的互补序列。大多数细菌 CRISPR 阵列转录本对于未翻译 RNA 来说异常长,这表明存在通过 Rho 防止过早转录终止的机制,Rho 是一种保守的细菌转录终止因子,可快速终止未翻译 RNA。我们表明 Rho 可以过早终止细菌 CRISPR 阵列的转录,并且我们确定了一种广泛的抗终止机制,该机制可拮抗 Rho 以促进 CRISPR 阵列的完全转录。因此,我们的数据强调了转录终止和抗终止在细菌 CRISPR-Cas 系统进化中的重要性。
聚合物微阵列可快速识别病毒样颗粒(VLP)的竞争性吸附剂 Andrew J. Blok, 1 Pratik Gurnani, 1 Alex Xenopoulos, 2 Laurence Burroughs, 3 Joshua. Duncan, 4,5 Richard A. Urbanowicz, 4,5 Theocharis Tsoleridis, 4,5 Helena Müller, 6 Thomas Strecker, 6 Jonathan K. Ball, 4,5 Cameron Alexander 1 和 Morgan R. Alexander 3 1 诺丁汉大学药学院分子治疗与制剂系,诺丁汉,NG7 2RD,英国。 2 EMD Millipore,80 Ashby Road,贝德福德,马萨诸塞州 01730,美国。 3 诺丁汉大学药学院先进材料与医疗技术系,NG7 2RD,英国。 4 诺丁汉大学医学与健康科学学院沃尔夫森全球病毒研究中心,NG7 2RD,英国。5 诺丁汉生物医学研究中心,诺丁汉女王医疗中心南区 C 楼,NG7 2UH 6 菲利普斯大学马尔堡病毒学研究所,德国马尔堡 摘要 SARS-CoV-2 的出现凸显了全球对平台技术的需求,以便快速开发诊断、疫苗、治疗和个人防护设备 (PPE)。然而,许多当前的技术需要对特定材料-病毒体相互作用的详细机制知识才能使用,例如帮助纯化疫苗成分,或设计更有效的 PPE。在这里,我们展示了一种用于筛选细菌-表面相互作用的聚合物微阵列方法,可以筛选出具有所需材料-病毒体相互作用的聚合物。包括荧光团在内的非致病性病毒样颗粒在水性缓冲液中暴露于阵列,作为唾液/痰液中携带到表面的病毒体的简单模型。测量拉沙病毒和风疹病毒颗粒的竞争性结合,以探测所选共聚物的相对结合特性。这为开发一种有望用于病毒结合的新材料的方法提供了第一步,下一步是开发这种方法来评估绝对病毒吸附和评估活病毒活性的衰减,我们建议将其作为材料放大步骤的一部分,在生物实验室安全 4 级设施中进行,并使用更复杂的介质来代表生物流体。正文 诊断中选择性生物分子识别的常用策略通常利用抗原-抗体相互作用,例如常见的 ELISA 免疫测定。1, 2 虽然这些测定通常可以获得高选择性,但存在许多缺点限制了它们的更广泛使用,包括制造成本(每种抗原都需要开发一种特定的抗体)以及通常对热敏感的试剂的储存和运输。当目标应用需要与相关生物分子类别而不是特定的单个分析物相互作用时,这些缺点变得更加重要。先前的研究已经使用低成本聚合物来修饰纳米晶体 3 和色谱材料 4,5,目的是引入对病毒靶标的广谱结合亲和力。然而,即使是从少量单体衍生的无数假定共聚物结构也意味着迄今为止,仅探索了可用于聚合物亲和剂和生物分子螯合剂的化学空间的一小部分。聚合物微阵列已经开发出来,以便同时研究单个表面上数千种化学上独特的材料的生物材料亲和力 6-13 。这种高通量方法现已用于识别用于一系列生物医学应用的材料,例如抑制细菌生物膜形成 13 和具有可控行为的干细胞生长 8 。聚合物微阵列可通过喷墨或接触印刷轻松制造,并结合少量商用光固化单体的原位聚合。6 在本研究中,我们提出了一种基于聚合物微阵列平台的方法,用于快速识别源自市售单体的材料,这些材料能够对病毒样颗粒进行差异吸附
• Front End Preamplifiers, A/D conversion and data processing/readout in small FE card • TDlink : single optical ring connection for synchronization, readout and slow control • Data Concentrator: provides global synch, trigger logic, event data building and storage • Easy scalable and deployable: 8192 channels per Data Concentrator
1美国密歇根大学生物医学工程系,美国密歇根州安阿伯市,美国48109,美国2密歇根大学心理学系,密歇根大学,安阿伯,密歇根州安阿伯市,48109,美国,美国神经病学系3,加利福尼亚大学,加利福尼亚大学,加利福尼亚大学,旧金山,旧金山,CA 94158 48109,美国美国5分子和行为神经科学研究所,密歇根大学,安阿伯,密歇根州安阿伯市,美国48109,美国6卡夫利基本神经科学研究所神经科学计划,密歇根大学,安阿伯,密歇根州安阿伯市,美国48109,美国9个机器人计划,密歇根大学,密歇根大学,安阿伯,密歇根州安阿伯市,美国48109,美国美国10号生物物理学,密歇根大学,安阿伯,安阿伯,密歇根州安阿伯,密歇根州48109,美国11个作者。
摘要 人工神经网络等受大脑启发的计算概念已成为经典冯·诺依曼计算机架构的有前途的替代品。光子神经网络的目标是在光子基底中实现神经元、网络连接和潜在学习。本文,我们报告了通过高质量垂直腔面发射激光器 (VCSEL) 阵列开发快速、节能的光子神经元纳米光子硬件平台。开发的 5 × 5 VCSEL 阵列通过均匀制造结合对激光波长的单独控制提供高光学注入锁定效率。注入锁定对于基于 VCSEL 的光子神经元中信息的可靠处理至关重要,我们通过注入锁定测量和电流诱导光谱微调证明了 VCSEL 阵列的适用性。我们发现我们研究的阵列可以轻松调整到所需的光谱均匀性,因此表明基于我们技术的 VCSEL 阵列可以作为下一代光子神经网络的高能效和超快光子神经元。结合完全并行的光子网络,我们的基板有望实现达到10 GHz 带宽的超快速操作,并且我们表明,基于我们的激光器的单一非线性变换每个 VCSEL 仅消耗约 100 fJ,与其他平台相比,具有很强的竞争力。
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2020 年 6 月 26 日发布。;https://doi.org/10.1101/2020.06.25.170977 doi:bioRxiv preprint
摘要 具有里德堡介导相互作用的单个原子组装阵列为多体自旋哈密顿量的模拟以及基于通用门的量子信息处理的实现提供了强大的平台。我们展示了在微透镜产生的可重构几何多点陷阱阵列中首次实现里德堡激发和受控相互作用。我们利用原子逐个组装来确定性地制备预定义的铷里德堡原子二维结构,这些结构具有精确已知的相互分离和可选择的相互作用强度。通过调整几何形状和所讨论的里德堡状态,可以访问从弱相互作用到强耦合的参数范围。我们表征了 57D 5 / 2 状态下非相互作用原子簇的同时相干激发,并分析了实验参数和局限性。对于利用 87D 5 / 2 状态优化的里德堡阻塞配置,我们观察到集体增强的拉比振荡。
摘要:现代高通量纳米图案化技术(如纳米压印光刻技术)使得在大面积基底(cm 2 至 m 2 规模)上制造纳米结构阵列(尺寸为 10 至 100 纳米的特征)成为可能,例如硅晶片、玻璃片和柔性卷对卷网。制造这种大面积纳米结构阵列 (LNA) 的能力创造了广阔的设计空间,实现了广泛的应用,包括光学设备(例如线栅偏振器、透明导体、彩色滤光片和抗反射表面)以及电子元件的构建块(例如超级电容器、传感器和存储器架构)。然而,现有的计量方法将难以与制造方法一起扩展。例如,扫描电子显微镜 (SEM) 和原子力显微镜 (AFM) 具有微米级视场 (FOV),这妨碍了对以每分钟平方米的速度制造的 LNA 进行全面特性分析。散射测量方法具有更大的 FOV(通常为几百微米到几毫米),但传统散射测量系统一次只测量一个点的样品,这也使得它们对于大规模 LNA 制造来说太慢。在这项工作中,我们展示了使用高光谱成像对传统光谱散射测量方法进行并行化,将该技术的吞吐量提高了 106-107 倍。我们通过使用高光谱成像和反射光谱的逆向建模来展示这种方法,以微米级空间分辨率获得毫米和厘米级 Si 纳米柱阵列结构的三维几何数据。这项工作表明,可以对各种 LNA 进行几何测量,并有可能在大面积上实现高速测量,这对于未来的 LNA 制造至关重要。
摘要 FANCI:FANCD2 单泛素化是范可尼贫血 (FA) DNA 修复途径稳定复制叉的关键事件。有人提出,在停滞的复制叉中,单泛素化的 FANCD2 可募集含有泛素结合基序的 DNA 修复蛋白。在这里,我们在体外重建了 FA 途径,以研究 FANCI:FANCD2 单泛素化的功能后果。我们报告称,单泛素化不会促进任何特定的外源蛋白质:蛋白质相互作用,而是稳定 dsDNA 上的 FANCI:FANCD2 异二聚体。这种夹紧只需要 FANCD2 亚基的单泛素化。我们进一步使用电子显微镜显示纯化的单泛素化 FANCI:FANCD2 在长 dsDNA 上形成丝状阵列。我们的研究结果揭示了单泛素化的 FANCI:FANCD2(在许多癌症类型和所有 FA 病例中存在缺陷)如何在 DNA 结合时被激活。