亲爱的编辑,随着 VLSI 技术的发展,环栅 (GAA) 硅纳米线晶体管 (SNWT) 已成为技术路线图末端最终缩放 CMOS 器件最有潜力的候选者之一。一些先驱研究已经证明了 GAA SNWT 的超可扩展性和高性能 [1-3]。然而,在实际制作结果中 [1,2],由于纳米线对蚀刻工艺的阴影效应,环栅栅极电极通常不是关于纳米线中心轴理想对称的,而是沿纳米线轴向呈梯形横截面。栅极电极的这种不对称性会使性能评估不正确,并导致用于电路仿真的器件紧凑模型不准确。然而,对非对称 GAA 硅纳米线 MOSFET 建模的研究仍然不足 [4,5]。本研究建立了非对称栅极GAA SNWT的有效栅极长度模型,并用技术计算机辅助设计(TCAD)仿真对其进行了验证。利用所提出的模型,可以将非对称GAA SNWT视为等效对称器件,从而可以在电路仿真中简化建模参数。仿真与方法。图1(a)沿沟道方向描绘了非对称栅极GAA SNWT的横截面。在
我分析的核心问题是:“与特定技术互动的体验如何影响我们对世界的体验?”人与技术互动的研究传统上将人与技术视为对立面,或者至少在本体论上是不同的。技术有时被解释为与人类实现的对立,而不是使人们实现自己的意图。在这种恐技术观点中,技术的发展是造成我们社会非人压迫的主要原因。安德鲁·芬伯格阐述了这种方法的一个版本。安德鲁·芬伯格是一位政治哲学家,他研究新马克思主义传统与技术现象学方法之间的关系。他对权力的思考受到已故福柯思想的启发。他断言政治权力与技术的文化挪用密切相关。芬伯格认为,我们社会当前的技术环境存在着严重问题。他指出,工业社会“将技术发展导向剥夺工人的权力和大众的大众化”(Feenberg 2005,第 53 页)。由于这些情况,所有者或其代表的自主权“在他们所掌握的技术的每次迭代中都重现了他们自己的至高无上的条件”(同上)。这种情况最终导致技术统治,即“技术和管理传播到社会生活的每个领域”(Feenberg 2005,第 55 页)。这种技术恐惧症的另一个版本是尼尔·波兹曼(Neil Postman)所坚持的。波兹曼在他的著作《技术垄断:文化向技术的屈服》(Postman 1993)中认为,人类文化可以根据技术分为三个时期:工具使用、技术统治和技术统治。在最后一个时期,即技术垄断时期,工业生产的逻辑不仅将控制经济思想,就像在技术统治时期一样,还将控制文化和哲学思想。然而,这些观点是有问题的,因为人类不能脱离技术而独立地被理解,就像技术不能脱离人类而独立地被理解一样。技术有助于塑造人的意义,它们以一种不参考另一个就无法理解的方式融合在一起。当然,这并不意味着技术在人类生活中的所有参与都同样令人愉快。相反,这确实意味着,如果我们想研究人与技术的关系,压迫与反抗的范式可能不是最合适的范式。新兴技术重塑了人类与世界的关系(De Preester 2010)。Don Ihde 将我们的技术环境称为“技术圈”,在这个技术圈中,
当不对称连接双门MOSFET制造为SIO 2 /High-K介电堆积的栅极氧化物时,研究了开关电流比的变化。高介电材料具有降低短通道效应的优势,但是由于带偏移的偏移量减少和使用硅的界面性能较差,栅极寄生电流的上升已成为一个问题。为了克服这一缺点,使用了堆叠的氧化膜。电势分布是从柱道方程式获得的,阈值电压是从第二个衍生方法计算得出的,以获取循环。结果,该模型与其他论文的结果一致。随着高介电材料的介电性的增加,开关电流比率增加,但在20或更多的相对介电常数下饱和。开关电流比与上和下高介电材料厚度的算术平均值成比例。SIO 2显示了10 4或更低的开关电流比率,但TIO 2(K = 80)的On-Own电流比增加到10 7或更多。
基于物理的神经形态计算是当前数字技术的有前途的算法,因为其能量效率,并行性的潜力和较大的带宽。在各种体系结构中,复发性神经网络(RNN)特别适合以频度依赖性(例如音频和视频信号)处理数据[?]。但是,他们解决特定任务的监督培训通常是数据密集型的,需要调整网络的互发矩阵,这是硬件实现的挑战。储层计算(RC)提供了一个框架来通过简化训练过程来克服此问题,从本质上讲,将RNN未经训练以及在结合RNN节点的瞬时响应的输出层上使用简单的lin-1 eR-ear回归[??]。这些考虑因素通过使用七个技术平台(包括微电子学,旋转和光子学[??]。在后一类中,已经提出了各种插曲[? ]包括大规模的自由空间体系结构[???],光反馈体系结构[???]和光子集成电路[??]。这些物理系统已经在各种任务上证明了最先进的性能,包括非线性通道均衡,混乱的时间序列预测和语音识别[?]。],其中一个物理非线性反馈体系结构依赖于时间延迟储层(TDRC)方法[?
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
我们研究了倾斜的Weyl半准薄膜的表面等离子体极化的分散体和光谱。倾斜的Weyl半含量在Weyl节点处具有倾斜的Weyl锥,并用封闭的费米表面和I型II分类为I型,并带有过时的Weyl锥和开放的费米表面。我们发现,即使在没有外部磁场的情况下,该系统的表面等离子体极化的分散也是非偏置的。此外,我们证明了倾斜参数对控制这种非进取心具有深远的作用。我们揭示了II型Weyl半分化的薄膜以负基组速度托有表面等离子体极化模式。此外,我们表明该结构的角光谱是高度不对称的,并且在吸收性和反射率中,这种角度不对称性在很大程度上取决于倾斜的Weyl semimimetal的倾斜参数。这些令人兴奋的功能建议在光学传感设备,光学数据存储和量子信息处理的设备中使用倾斜的Weyl半学。
摘要:在本文中,提出了基于硅(gan-on-on-si)上基于氮化壳的KU波段主动雷达应用的微波整体整合电路(MMIC)高功率放大器(HPA)。设计基于三阶段的体系结构,并使用Ommic Foundry提供的D01GH技术实施。以及稳定性和热分析提供了有关最大化交付功率的体系结构定义和设计过程的详细信息。为了优化放大器性能,输出组合仪中包含了不对称性。实验结果表明,HPA达到39.5 dBM脉冲模式输出功率,峰值线性增益为23 dB,排水效率为27%,并且在16-19 GHz频率范围内具有良好的输入/输出匹配。芯片区域为5×3.5 mm 2,用于测量值安装在定制模块上。这些结果表明,基于GAN-on-SI的固态功率放大器(SSPA)可用于实现KU波段活动雷达。
。CC-BY-ND 4.0 国际许可证永久有效。它以预印本形式提供(未经同行评审认证),作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权所有者于 2021 年 2 月 9 日发布了此版本。;https://doi.org/10.1101/2021.02.08.430296 doi: bioRxiv preprint
可控的方式。[6] 然而,自上而下的技术不可扩展,且大多数技术耗时耗力,从而阻碍了它们的潜在应用。特别是手性微结构可以通过调制飞秒激光焦点的单次曝光快速制造。[7] 其几何形状严格由可实现的结构化焦点决定,并且得到的表面质量相当差。相反,自下而上的方法提供了一种经济高效且可扩展的替代方法,通过由不同材料(如共聚物、[8] 肽、[9] 纳米粒子 [10] 和 DNA 四面体 [11] 制成的亚基的顺序自组装来创建分层纳米结构。不幸的是,由于自发自组装过程的固有特点,对几何形状、空间排列、规律性和螺旋性的精确控制非常困难。自上而下和自下而上相结合的混合制造技术的最新进展有望克服上述一些限制。[12] 特别是,通过介导弹性毛细管相互作用的毛细管力驱动自组装引起了人们的极大兴趣,因为它具有简单性和可扩展性的独特优势,[13] 并且在一定程度上已用于混合制造策略。基于光刻的技术已经实现中尺度刷毛的制造,并且通过利用弹性毛细管聚结已经得到高度有序的螺旋簇。[14] 然而,由于圆形原纤维具有旋转对称性,因此单个簇所实现的手性是随机的。虽然可以通过将横截面渲染为矩形来获得特定的手性重排,但手性的可调性仍然有限。利用电子束光刻技术实现10纳米级的纳米柱,然后通过毛细管力诱导的纳米内聚力进行自组装。[15] 利用多光束干涉光刻技术,结合溶液蒸发过程中的毛细管力,制备并组装大面积图案化微柱。[16] 我们之前的研究表明,可以利用毛细管力来驱动直柱生成具有高度可控性的分级微结构。[17] 然而,由于毛细管力在微尺度上很难利用,它们都无法实现可控的手性结构。因此,开发一种简便、可控、高效的功能手性结构制备方法是十分有必要的。