至10 6细胞/m 3对人类井的潜在健康影响[1]。文件及其同事总结了城市和农村之间空气中微生物的丰度和多样性的差异,并进一步透露,由于较高的丰度和多样化的细菌和真菌,农村空气中的微生物组更健康[2]。然而,空气中的病原体会威胁人类健康,并通过在皮肤,粘膜以及消化和呼吸道上定位,从而威胁人类健康[3]。潜在的微生物病原体在空气中无处不在,许多研究报道了许多从空气和粉尘中分离出的致病细菌和真菌[4]。由于追求人类以寻求更好的空气质量,已经探索了空气中微生物群落的多样化和复杂组成及其对人类健康的潜在风险。从理论上讲,由于空间和时间变化较大,应根据主动空气采样评估空气中的微生物[5]。然而,最近的大多数研究通过如今的短期采样或灰尘收集来探讨了空气中的微生物群落,该群落无法捕获整体微生物情况,到目前为止,很少有研究报告说,报道了在高时间分辨率(例如小时时间序列)下机源性微生物的动态。这样的小时 - 空气中微生物组成界的比例表征将提供更好地了解机载微生物与大气变化之间关系的潜力。环境中的微生物群落通常由一些丰度(即丰富的物种)和更多低
重力辅助机动已应用于许多太空任务,用于在接近天体后改变航天器太阳中心速度矢量和轨道几何形状,从而节省推进剂消耗。可以利用额外的力量来改进机动,例如航天器与大气相互作用和/或推进系统产生的力;减少飞行时间并减少多次绕过次级天体的需要。然而,这些应用需要改进关键子系统,而这些子系统对于完成任务必不可少。本文对重力辅助的几种组合进行了分类,包括使用推力和空气动力的机动;介绍了这些变化的优点和局限性。分析了在高海拔地区实施低升阻比对航空重力辅助机动的影响,包括有推进力和无推进力。由于金星和火星与行星际任务的相关性、对探索的兴趣以及对其大气的了解,因此模拟了这些机动。在高海拔地区,低升阻比的气动重力辅助机动使金星的转弯角度增加了 10° 以上,火星的转弯角度增加了 2.5°。与重力辅助相比,这种机动使能量增益增加了 15% 以上。从技术成熟度来看,目前的太空技术发展水平使得在短期内应用高海拔气动重力辅助机动成为可能。关键词天体动力学;航天器机动;大气;轨道传播;空气动力;行星际飞行;绕行。
摘要。我们探讨了模型的对流层羟基(OH)浓度趋势的敏感性,对陨石和近期气候锻炼(NTCFS),即甲烷(CH 4)氮氧化物(no x = no x = no x = no 2 + no 2 + no)碳二碳(CO),非甲氧化型和异源性有机型(NM)。 (ODS),使用地球物理动力学实验室(GFDL)的大气化学 - 气候模型,由第六次耦合模型对比计划(CMIP6)开发的排放清单(CMIP6)驱动的大气模型4.1版(AM4.1),并由经过的经验的Sater Surpery Project (AMIP)模拟。我们发现,从1980年到2014年,全球模型的对流层空气加权平均值[OH]增加了约5%。我们发现,没有X排放和CH 4浓度主导着建模的全球趋势,而CO排放和流星学对于推动区域趋势也很重要。对流层NO 2色谱柱趋势在很大程度上与从臭氧监测仪器(OMI)卫星中检索的趋势一致,但是模拟的CO列趋势通常高估了从对流层(Mo-Pitt)卫星中污染测量的测量结果,可能会反射出偏见,尤其是派出了派出了越来越多的派出了众多的派出量,尤其是派出了派出了派出的派出。
AMD Xilinx 的全新 Versal 自适应计算加速平台 (ACAP) 是一种 FPGA 架构,将可重构结构与其他片上强化计算资源相结合。AI 引擎就是其中之一,通过以高度矢量化的方式运行,它们提供了大量原始计算,这可能对包括 HPC 模拟在内的一系列工作负载有益。然而,这项技术仍处于早期阶段,尚未证明其可以加速 HPC 代码,缺乏基准测试和最佳实践。本文提供了一份经验报告,探讨了将 Piacsek 和 Williams (PW) 平流方案移植到 Versal ACAP 上,使用该芯片的 AI 引擎来加速计算。平流是一种基于模板的算法,在大气建模中很常见,包括最初开发该方案的几个气象局代码。使用该算法作为载体,我们探索了构建 AI 引擎计算内核的最佳方法,以及如何最好地将 AI 引擎与可编程逻辑连接起来。使用 VCK5000 与 VCK5000 和 Alveo U280 上的非 AI 引擎 FPGA 配置以及 24 核 Xeon Platinum Cascade Lake CPU 和 Nvidia V100 GPU 评估性能,我们发现虽然结构和 AI 引擎之间的通道数量是一个限制,但通过利用 ACAP,我们可以将性能提高一倍与 Alveo U280 相比。
如今,掺杂稀土离子的石英光纤激光器,尤其是 Y b 3+ 光纤激光器,其平均功率已达到数千瓦量级,许多技术应用已开始显现可行性。例如:医疗手术、岩石钻探、远程云感测、射电天文学、太空无线电通信、卫星通信、无线电传输、远程激光通信以及用于远程充电电池的激光器。因此,其中一些应用需要研究与激光束大气传播相关的现象 [1]、[2]、[3] 和 [4]。最近,一些研究开始对速度场作为动态变量的数值解进行建模 [5],这与先前研究规定流体速度 [6]、[7] 不同。当激光束传播通过吸收介质时,会发生称为热晕的效应。尽管介质的吸收效应非常小,但当流体为空气时,会促进激光束附近的温度和密度场的变化。温度变化会引起折射率的变化,从而
摘要。自由空间光通信在部署方便和成本方面是光纤通信系统非常有前途的替代方案。中红外光具有几个与自由空间应用密切相关的特性:即使在恶劣条件下在大气中传播时吸收率也很低、长距离传播期间波前稳定、以及此波长范围不受任何管制和限制。最近已经展示了利用子带间设备进行高速传输的概念验证,但这一努力受到短距离光路(最长 1 米)的限制。在这项工作中,我们研究了使用单极量子光电子学构建长距离链路的可能性。使用了两种不同的探测器:非制冷量子级联探测器和氮冷却量子阱红外光电探测器。我们在背靠背配置中评估了链路的最大数据速率,然后添加了 Herriott 单元以将光路长度增加到 31 米。通过使用脉冲整形、预处理和后处理,我们在 31 米传播链路的两级(OOK)和四级(PAM-4)调制方案中达到了创纪录的 30 Gbit s −1 比特率,并且比特误码率与纠错码兼容。
JAXA 提出了低地球轨道 (LEO) 卫星的创新理念。超低空试验卫星 (SLATS),也称为 TSUBAME,是第一颗占据 300 公里以下超低轨道 (S-LEO) 或极低地球轨道 (VLEO) 的地球观测卫星。SLATS 的目的是 1) 测试卫星在超低空使用离子发动机对抗高大气阻力时保持高度的能力,2) 获取大气密度和原子氧 (AO) 数据,3) 测试光学地球观测。SLATS 于 2017 年 12 月 23 日成功发射。随后,SLATS 使用化学推进器、气动阻力和离子发动机推进,在 636 天内将高度控制在 271.7 公里。 SLATS 最终在 167.4 公里的轨道上维持了 7 天,并于 2019 年 10 月 1 日完成运行。所有 SLATS 和原子氧监测器 (AMO) 数据都是在这些操作期间获取的。AMO 是监测 AO 及其对航天器材料影响的任务传感器之一。来自 AMO 的数据有助于未来 S-LEO 卫星设计的材料选择。AMO 获得的数据很有价值,因为它们提供了有关 AO 通量及其对空间材料影响的大量知识。精确的大气密度模型和大气成分模型对于预测轨道上碎片的轨迹或再入是必不可少的。已经开发了 NRLMSISE-00、JB 2008 和 DTM2013 等大气模型,但很少有研究将这些模型与 LEO 中的实际大气环境进行比较。从 SLATS 获得的平均大气密度低于大气模型(NRLMSISE-00、JB 2008 和 DTM 2013)预测的值。了解模型的准确性将有助于未来 S-LEO 卫星的轨道控制以及 LEO 中碎片的轨道预测和控制。
尘埃晶粒,通过与电子,离子和电场的相互作用获得的电荷促进了集体行为。对于许多应用,从纳米颗粒的产生[1,2]到污染控制[3,4],充电的尘埃颗粒最终使活跃的等离子体环境留下了随后的处理。因此,带电的灰尘晶粒经历了从活性等离子体区域的过渡,通过富含离子的等离子体余泽,并带有净正空气电荷,进入含有中性气体和长期自由基的平衡环境。早期观察[5-7]在低压下腐烂的等离子体中的尘埃[5-7]触发了对时间和空间余气等离子体中灰尘(DE)的调查[8-18]。相比之下,与低压的尘土飞扬的等离子体余滴相比,纳米颗粒与大气压力余潮等离子的相互作用构成了相对未开发的领域。Nevertheless, the synthesis of nanocrystals at atmospheric pressure provides a low cost method to produce and deposit nanoparticles [ 19 – 22 ] with a speci fi c structure [ 23 , 24 ] and optical properties [ 25 , 26 ], while the deposition of thin fi lms using atmospheric pressure plasmas represents a cost effective alternative to vacuum processes [ 27 – 30 ] and provides the potential to include nanoparticles [ 20 ].随着这些
在其整个生命周期中,航天运载火箭都会影响地球和太空中的局部和全球环境。鉴于航天工业的预期增长,最近的文献表明,这些活动对大气的影响研究不足,也未得到充分解决。火箭以独特的方式将燃烧气体和颗粒排放到大气的不同层中,通过辐射强迫引起包括臭氧化学和地球能量平衡扰动在内的影响。国际环境法规目前并未解决火箭排放问题,国家层面只有稀少的孤立政策。需要对航天发射的影响进行更多研究,包括新的现场测量和全球大气模型,以指导政策制定和未来的缓解措施。制定可操作和协作的运载火箭可持续性指数可以作为未来法规的基础,或通过将减排作为竞争优势来激励该行业采用更可持续的设计。2021 年是私人航天行业的转折点。在商业首创中