观察者还使用“回避”而不是“减少”来表示同一件事。参见,例如,Battocletti等人,前注2,第528-29页; Gregory Trencher等人,主要公司对低质量抵消的需求破坏了自愿碳市场的气候完整性,15 n n n ature communications no。6863,2024,3,https:// perma。cc/ek2z-2gcy。其他人则区分“减少排放”和避免排放量。”参见,例如,《从业者指南:将自愿性碳市场与巴黎协议测试保持一致》,g old S tandard(2024年7月3日),https://perma.cc/73dt-zf3q(将减少的排放定义为“由于特定的干预措施,诸如Ensiiss Extions and Emission and renene and renew and renew and renew and renew and renew and降低的排放”,以及AVO的效率,以及AVO的效率。由于较低或没有温室气体排放的干预措施,散发到大气中,例如林业相关的项目); Rena S. Miller和Jonathan L. Ramseur,自愿碳信贷市场和商品期货贸易委员会,r sch。s erv。(2024年6月13日),https://crsreports.congress.gov/product/pdf/r/r48095(上次访问,2025年1月30日)[永久链接不可用];朱利奥·弗里德曼(Julio Friedmann)和马修·D·波茨(Matthew D.除了令人困惑之外,减少和避免项目之间的这种区别分散了人们的注意力,从减少当前或未来排放的项目(减少项目,本报告的术语中)和消除过去排放(撤销项目)的项目之间的区别。参见,例如,牛津原则,前注2,第16页(指出降低信用可以加速短期或中期的脱碳化,但“世界各地的组织在零净目标日期一直散发出来,而付费零组织或参与者只能减少他们的排放,全球排放将永远无法达到网络零。”
原子级精确的石墨烯纳米带 (GNR) 因其可大幅改变的电子特性而日益受到关注,这些特性可通过在化学合成过程中控制其宽度和边缘结构来定制。近年来,GNR 特性在电子设备中的开发主要集中在将 GNR 集成到场效应晶体管 (FET) 几何形状中。然而,由于存在单栅极,此类 FET 器件的静电可调性有限。本文报道了将 9 个原子宽的扶手椅型石墨烯纳米带 (9-AGNR) 集成到由超窄手指栅极和两个侧栅极组成的多栅极 FET 几何形状中的设备。高分辨率电子束光刻 (EBL) 用于定义窄至 12 纳米的手指栅极,并将它们与石墨烯电极相结合以接触 GNR。低温传输光谱测量揭示了具有丰富库仑钻石图案的量子点 (QD) 行为,表明 GNR 形成的 QD 既串联又并联。此外,结果表明,附加栅极能够实现纳米结中 QD 的差分调谐,为实现基于 GNR 的多点系统的多栅极控制迈出了第一步。
首先在量子计量学中引入,以衡量量子状态执行超过射击限制的干涉法[1,2]的能力,量子Fisher信息(QFI)在不同领域(包括量子信息理论和多体物理学)中起着基本作用。作为对计量学和感应的增强的敏感性,需要产生多部分纠缠状态[3],QFI引起了重大兴趣作为纠缠的见证。特别是,纠缠“深度”的概念 - 在给定状态下的纠缠颗粒的微型数量 - 以及多部分纠缠的基础结构可能与QFI的值有关[4,5]。在多体物理学中,QFI揭示了混合状态的纠缠的能力使其成为旋转模型研究的关键数量,特别是在有限的温度[6]上跨越相变的量子态的普遍纠缠特性[6],并突出了多部分范围的作用,在拓扑相转变[7]中。这封信提供了一项协议,以通过随机测量值估算最先进的量子设备中的QFI。测量QFI的挑战是由于它是密度矩阵的高度非线性函数而产生的。QFI是针对给定的Hermitian操作员A和量子状态ρ定义的,可以以以下封闭形式写入:
激光粉末床融合(L-PBF)添加剂制造(AM)是一种基于金属的AM工艺,能够生产具有细微几何分辨率的高价值复杂组件。作为熔体池特征(例如熔体池的大小和尺寸)与制造零件的孔隙度和缺陷高度相关,至关重要的是,预测过程参数如何影响构建过程中熔体池的大小和尺寸,以确保构建质量。本文提出了一个两级机器学习(ML)模型,以预测在扫描MultiTrack构建过程中的熔体大小。为了说明热历史对熔体池尺寸的影响,在建模体系结构的低级别上预测了所谓的(Prescan)初始温度,然后用作上层物理信息的输入特征,以预测熔体池大小。从Autodesk的NetFabB仿真生成的仿真数据集用于模型培训和验证。通过数值模拟,与幼稚的一级ML相比,提出的两级ML模型表现出很高的预测性能,其预测准确性显着提高,而无需将初始调为初始调节作为输入特征。[doi:10.1115/1.4052245]
简单的苏格兰胶带将其剥落到本构单层。[1]高温超导体(HTSC)提供多种这样的分层相关系统。Remarkably, even the atomically thin Bi 2 Sr 2 CuCa 2 O 8 + δ (BSCCO) layers, i.e., the layers containing a single or a few ele- mentary cells, have been found to possess the superconducting transition tempera- ture close to that of the bulk samples [2,3] and showed the superconductor–insu- lator transition driven by the evolution of the density of states.[4]由于这些属性,HTSC可以用作VDW异质构造的起始块。但是,隔离拥有超导性的铜酸盐单层仍然是一项艰巨的任务,尤其是如果人们希望实现薄而结晶的界面。关键是,如果在环境气氛下被氧气污染,原子上的BSCCO薄片会高度绝缘。[1,5]拉曼测量结果[5,6]报道了薄BSCCO薄片中氧气的高化学活性。更详细的研究[7]表明,水分子也可以迅速恶化BSCCO薄片的表面。此外,铜层中的氧气掺杂剂在上方移动
摘要。连接的图具有(k,ℓ) - 覆盖,如果其每个边都包含在至少在k级的cliques中。以极端组合学的最新进展和边缘修改问题的文献的推动,我们研究了(k,ℓ) - 结构问题的算法版本。给定连接的图G,(k,ℓ) - 覆盖问题是识别g的最小子集,以使其在g中添加的添加结果会导致具有A(k,ℓ)覆盖的图形。对于每个常数k≥3,我们表明(k,1) - 覆盖问题是通用图的NP综合。此外,我们表明,对于每个常数k≥3,(k,1)cover问题承认,除非p = np,否则不接受多项式时间恒定因子近似算法。但是,我们表明(3,1) - 覆盖问题可以在输入图是和弦时在多项式时间内解决。对于树的类别和K的一般值,我们表明(K,1) - 覆盖概率是NP-HARD,即使对于蜘蛛也是如此。但是,我们表明,对于每个k≥4,(3,k-2) - 覆盖和(k,1) - 跨性问题是恒定的,当输入图是树是一棵树时。关键字:计算复杂性,图形算法,最佳算法,边缘修改问题和近似算法。
采用三维热电分析模拟了共晶SnAg焊料凸点在收缩凸点尺寸时的电流密度和温度分布。研究发现,对于较小的焊点,焊料中的电流拥挤效应显著降低。减少焊料时,热点温度和热梯度增大。由于焦耳热效应,凸点高度为144.7 lm的焊点最高温度为103.15℃,仅比基板温度高3.15℃。然而,当凸点高度降低到28.9 lm时,焊料中的最高温度升高到181.26℃。焊点收缩时会出现严重的焦耳热效应。较小焊点中焦耳热效应较强可能归因于两个原因,首先是Al走线的电阻增加,它是主要的热源。其次,较小凸块中的平均电流密度和局部电流密度增加,导致较小焊料凸块的温度升高。2009 年由 Elsevier Ltd. 出版。
首先在量子计量学中引入,以衡量量子状态执行超过射击限制的干涉法[1,2]的能力,量子Fisher信息(QFI)在不同领域(包括量子信息理论和多体物理学)中起着基本作用。作为对计量学和感应的增强的敏感性,需要产生多部分纠缠状态[3],QFI引起了重大兴趣作为纠缠的见证。特别是,纠缠“深度”的概念 - 在给定状态下的纠缠颗粒的微型数量 - 以及多部分纠缠的基础结构可能与QFI的值有关[4,5]。在多体物理学中,QFI揭示了混合状态的纠缠的能力使其成为旋转模型研究的关键数量,特别是在有限的温度[6]上跨越相变的量子态的普遍纠缠特性[6],并突出了多部分范围的作用,在拓扑相转变[7]中。这封信提供了一项协议,以通过随机测量值估算最先进的量子设备中的QFI。测量QFI的挑战是由于它是密度矩阵的高度非线性函数而产生的。QFI是针对给定的Hermitian操作员A和量子状态ρ定义的,可以以以下封闭形式写入:
1.2. 背景。随机环境中的定向聚合物是非平衡统计力学中无序系统的典型模型,自 20 世纪 80 年代以来得到了广泛的研究。在这里,我们不会试图回顾大量的文献,而是参考优秀的书籍 [ 19 ] 及其引用的参考文献。该模型的一个显着特征是在所谓的低温状态下的局部化现象,这是一种物理上有趣的状态,其中聚合物路径被限制在能量上有利的一小组状态中。在高温状态下,路径表现出与布朗运动相同的扩散性,这更容易分析。当温度较低时,路径预计会表现出超扩散性,同时局限于某个优选区域。虽然这种行为众所周知很难量化,但近年来数学研究取得了重要进展。这涉及端点位移和自由能涨落的研究,属于 1 + 1 KPZ 普适性类别 [ 2 , 5 , 6 , 11 , 12 , 13 , 14 , 25 , 26 , 28 , 37 , 38 , 40 , 41 ],也涉及局域化行为的定量分析 [ 4 , 8 , 9 , 10 , 16 , 18 , 20 , 21 , 22 , 23 , 29 ]。
感测电路板和环境温度 温度传感器 IC(如 MAX6610/MAX6611)可感测其自身芯片温度,必须安装在要测量温度的物体上或附近。由于封装的金属引线和 IC 芯片之间有良好的热路径,因此 MAX6610/MAX6611 可以准确测量其焊接的电路板的温度。如果传感器用于测量电路板上发热元件的温度,则应将其安装在尽可能靠近该元件的位置,并应尽可能与该元件共享电源和接地走线(如果它们没有噪声)。这样可以最大限度地增加从元件到传感器的热量传递。塑料封装和芯片之间的热路径不如通过引线的路径好,因此 MAX6610/MAX6611 与所有塑料封装的温度传感器一样,对周围空气温度的敏感度低于对引线温度的敏感度。如果电路板设计为跟踪环境温度,它们可以成功用于感测环境温度。与任何 IC 一样,接线和电路必须保持绝缘和干燥,以避免泄漏和腐蚀,特别是如果部件在可能发生冷凝的低温下工作。