用于真菌感染,除非对抗真菌治疗没有反应 病毒培养 病毒培养适用于口腔和口周水疱以及破裂的水疱。病毒培养不适用于疑似巨细胞病毒 (CMV) 口腔病变。 适用代码 以下程序和/或诊断代码列表仅供参考,可能并不全面。本指南中列出的代码并不意味着该代码所描述的服务是承保的或未承保的健康服务。健康服务的福利承保范围由会员特定的福利计划文件和可能要求承保特定服务的适用法律决定。包含代码并不意味着有任何报销权利或保证索赔支付。其他政策和指南可能适用。
噬菌体是一种细菌特异性病毒,外部蛋白衣壳包裹着噬菌体遗传物质,在某些情况下还有丝状尾巴。它们数量众多且变化多端,在影响微生物生态学方面发挥着重要作用。1 噬菌体与细菌共同进化了数亿年,选择性地结合并感染目标宿主,从而能够通过靶向裂解影响多菌株微生物种群的种群动态。此外,如果保存在非恶劣环境中,大多数噬菌体都具有长期高度稳定性,只有在紫外线下才会分解、物理磨损或暴露于某些化学物质时才会受损,只有少数例外。噬菌体基因组很小且相对简单,可以通过合成生物学方法进行工程改造,将小分子递送到入侵感染处,扩大或缩小噬菌体疗法的目标,或与生物材料结合用于伤口愈合技术。本综述旨在描述用于治疗感染(包括慢性和多重耐药性细菌群)的各种噬菌体疗法。特别关注噬菌体的递送方法以及所选策略的优缺点。
质粒是一种染色性遗传元素,存在于细菌中,很少存在于真核生物中。在细菌中,质粒是圆形双链DNA分子,其中包含控制多种功能的基因。质粒是自我复制的元素,但是它们在很大程度上取决于宿主细胞的生殖,因为它们使用了宿主细胞复制机制。第一个被发现的质粒是大肠杆菌K12的性因子或F质粒(F含量)。该质粒赋予大肠杆菌细胞(F +)与另一个缺乏该质粒的另一个结合的能力。f质粒可以存在于两个替代状态,即它可以保持在细胞中,也可以将其集成到大肠杆菌染色体中。质粒被称为偶发。
。cc-by-nc-nd 4.0国际许可证未通过同行评审获得证明)是作者/资助者,他已授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
QS指定了一个细胞对细胞通信过程,该过程使细菌能够响应周围微幼崽群落的细胞密度和物种组成的变化来集体修改其行为。这些过程涉及细胞外信号分子的生产,释放和整个范围检测,这些检测通常称为自动诱导剂(AIS)。它控制着各种表型的各种基因,例如生物发光,毒力因子的se of se of caption and毒力因子和细菌中生物膜的形成。Quorum淬火抑制QS和抑制其抑制的物质被称为Quorum Sensing抑制剂。几种化合物和Zymes介导QS的抑制作用,例如乳糖酶,酰基酶和氧化还原酶。除此之外,还发现一些非酶促的甲基二氧化物Quorum Quenching,也发现了一些植物植物化学物质可以抑制它。通过QS抑制(QSI)阻止QS(QSI)可能在破坏相关感染和慢性耐药性感染的装置中的生物膜形成方面起重要作用。与QS和QSI有关的该领域进行了更多的研究。然而,已经发现某些化学物质正在模仿Quorum感测AIS的AIS活性,例如5-羟色胺和粘胶酸。
背景:植物-微生物相互作用是不同生态系统中进化和生存的关键。健康的植物被各种微生物所寄生,这些微生物被称为植物微生物群,对植物的生长和适应性有着深远的影响。植物通过各种膜定位受体感知微生物。质膜水平的识别会引发植物宿主的特定反应,从而影响相关微生物群落的结构和功能。识别和理解这些相互作用背后的机制将使我们能够以可持续的方式改善植物健康和作物产量,同时减少由于基于耗能和气候昂贵的化学品的密集作物生长系统而产生的碳足迹。
许可证:《非洲健康,安全与环境杂志》(AJHSE)的本文由Creative Commons Attribution许可证4.0国际许可证获得许可和出版,该许可允许在任何媒介中不受限制地使用,分发和复制,前提是该文章被适当地引用。版权所有:作者完全保留了本已发表文章的版权。开放访问:作者批准在开放访问(OA)模型QA中永久性地在线:本文与“ Cope(出版伦理委员会)和PIE(出版完整性与伦理学”)一致。
微生物拥有高度进化的生存策略,这些策略已被用于解决药物输送问题。在肿瘤学中,“细菌作为药物”的概念可以利用化学疗法的直接细胞毒活性,同时还可以发展强大的治疗性抗癌免疫力。例如,溶瘤病毒 (OV) 可以选择性地感染和复制癌细胞,导致直接肿瘤细胞溶解以及诱导免疫原性细胞死亡 (ICD) 和抗肿瘤免疫。因此,OV 是一种新兴的癌症治疗方式,定位于生物疗法和免疫疗法的交界处。使用病毒的 OV 的应用,例如单纯疱疹病毒 (HSV)、水泡性口炎病毒 (VSV)、腺病毒 (Ad) 和安进的 T-VEC [1],这是 FDA 批准的第一个用于临床治疗黑色素瘤的 OV,
过去十年是微生物学的黄金时代,其标志是发现新型细菌数量的前所未有的增加。却获得对这些生物的生物学知识并没有跟上测序努力的步伐。要解锁这种遗传潜力,迫切需要通用(即特定于非物种的)基因工具盒。最近,我们开发了一种方法,称为底盘独立的重组酶 - 介绍的基因组工程(CARGAGE),从而使大型复杂基因簇的整合和表达直接直接进入多种细菌的染色体中。在这里,我们通过合并CRISPR-CAS9来扩展这项技术,从而允许多种细菌物种进行精确的基因组编辑。为此,我们开发了一个载有一个野生型和两个突变的LOX位点的着陆板,以通过旋转重组酶介导的盒式盒式磁带(RMCE)在两个位置整合外源DNA。第一个RMCE事件是整合Cas9和DNA修复蛋白基因的恢复,第二个RMCE事件使定制的SGRNA和修复模板可以集成。在此工作流程之后,我们在四个不同的γ-细菌特征中获得了精确的基因组编辑。我们还表明,插入的着陆垫和整个编辑机器可以在编辑后无稀有地删除。我们在这里报告了单个降落垫转座子的构建,并证明了其在多种物种之间的功能。降落垫和附件向量的模块化设计允许以类似方式设计和组装其他生物体的基因组编辑平台。我们认为,这种方法将大大扩展可容纳遗传操作的细菌清单,并提供了提高我们对微生物世界的理解的手段。
