4。Ansaldo E,Slayden LC,Ching KL,Koch MA,Wolf NK,Plichta DR等。akkermansia粘膜粘膜在稳态期间诱导肠道适应性免疫反应。科学。2019; 364(6446):1179-1184。 5。 Sefik E,Geva-Zatorsky N,Oh S,Konnikova L,Zemmour D,McGuire AM等。 个体肠道共生体诱导RORγ +调节性T细胞的不同种群。 科学。 2015; 349(6251):993-997。 6。 Lathrop SK,Bloom SM,Rao SM,Nutsch K,Lio CW,Santacruz N等。 结肠共生微生物群对免疫系统的外围教育。 自然。 2011; 478(7368):250-254。 7。 Yang Y,Torchinsky MB,Gobert M,Xiong H,Xu M,Linehan JL等。 肠道Th17细胞对共生细菌抗原的聚焦特异性。 自然。 2014; 510(7503):152-156。 8。 Xu M,Pokrovskii M,Ding Y,Yi R,Au C,Harrison OJ等。 c- MAF依赖性调节性T细胞介导对肠道病原体的免疫耐受性。 自然。 2018; 554(7692):373-377。 9。 Chai JN,Peng Y,Rengarajan S,Solomon BD,AI TL,Shen Z等。 螺旋杆菌是体内平衡和炎症中结肠T细胞反应的有效驱动因素。 SCI免疫。 2017; 2(13):EAAL5068。 10。 Ivanov II,Atarashi K,Manel N,Brodie EL,Shima T,Karaoz U等。 通过分段丝状细菌诱导肠道Th17细胞。 单元格。 2009; 139(3):485-498。 11。2019; 364(6446):1179-1184。5。Sefik E,Geva-Zatorsky N,Oh S,Konnikova L,Zemmour D,McGuire AM等。个体肠道共生体诱导RORγ +调节性T细胞的不同种群。科学。2015; 349(6251):993-997。 6。 Lathrop SK,Bloom SM,Rao SM,Nutsch K,Lio CW,Santacruz N等。 结肠共生微生物群对免疫系统的外围教育。 自然。 2011; 478(7368):250-254。 7。 Yang Y,Torchinsky MB,Gobert M,Xiong H,Xu M,Linehan JL等。 肠道Th17细胞对共生细菌抗原的聚焦特异性。 自然。 2014; 510(7503):152-156。 8。 Xu M,Pokrovskii M,Ding Y,Yi R,Au C,Harrison OJ等。 c- MAF依赖性调节性T细胞介导对肠道病原体的免疫耐受性。 自然。 2018; 554(7692):373-377。 9。 Chai JN,Peng Y,Rengarajan S,Solomon BD,AI TL,Shen Z等。 螺旋杆菌是体内平衡和炎症中结肠T细胞反应的有效驱动因素。 SCI免疫。 2017; 2(13):EAAL5068。 10。 Ivanov II,Atarashi K,Manel N,Brodie EL,Shima T,Karaoz U等。 通过分段丝状细菌诱导肠道Th17细胞。 单元格。 2009; 139(3):485-498。 11。2015; 349(6251):993-997。6。Lathrop SK,Bloom SM,Rao SM,Nutsch K,Lio CW,Santacruz N等。结肠共生微生物群对免疫系统的外围教育。自然。2011; 478(7368):250-254。7。Yang Y,Torchinsky MB,Gobert M,Xiong H,Xu M,Linehan JL等。 肠道Th17细胞对共生细菌抗原的聚焦特异性。 自然。 2014; 510(7503):152-156。 8。 Xu M,Pokrovskii M,Ding Y,Yi R,Au C,Harrison OJ等。 c- MAF依赖性调节性T细胞介导对肠道病原体的免疫耐受性。 自然。 2018; 554(7692):373-377。 9。 Chai JN,Peng Y,Rengarajan S,Solomon BD,AI TL,Shen Z等。 螺旋杆菌是体内平衡和炎症中结肠T细胞反应的有效驱动因素。 SCI免疫。 2017; 2(13):EAAL5068。 10。 Ivanov II,Atarashi K,Manel N,Brodie EL,Shima T,Karaoz U等。 通过分段丝状细菌诱导肠道Th17细胞。 单元格。 2009; 139(3):485-498。 11。Yang Y,Torchinsky MB,Gobert M,Xiong H,Xu M,Linehan JL等。肠道Th17细胞对共生细菌抗原的聚焦特异性。自然。2014; 510(7503):152-156。 8。 Xu M,Pokrovskii M,Ding Y,Yi R,Au C,Harrison OJ等。 c- MAF依赖性调节性T细胞介导对肠道病原体的免疫耐受性。 自然。 2018; 554(7692):373-377。 9。 Chai JN,Peng Y,Rengarajan S,Solomon BD,AI TL,Shen Z等。 螺旋杆菌是体内平衡和炎症中结肠T细胞反应的有效驱动因素。 SCI免疫。 2017; 2(13):EAAL5068。 10。 Ivanov II,Atarashi K,Manel N,Brodie EL,Shima T,Karaoz U等。 通过分段丝状细菌诱导肠道Th17细胞。 单元格。 2009; 139(3):485-498。 11。2014; 510(7503):152-156。8。Xu M,Pokrovskii M,Ding Y,Yi R,Au C,Harrison OJ等。c- MAF依赖性调节性T细胞介导对肠道病原体的免疫耐受性。自然。2018; 554(7692):373-377。 9。 Chai JN,Peng Y,Rengarajan S,Solomon BD,AI TL,Shen Z等。 螺旋杆菌是体内平衡和炎症中结肠T细胞反应的有效驱动因素。 SCI免疫。 2017; 2(13):EAAL5068。 10。 Ivanov II,Atarashi K,Manel N,Brodie EL,Shima T,Karaoz U等。 通过分段丝状细菌诱导肠道Th17细胞。 单元格。 2009; 139(3):485-498。 11。2018; 554(7692):373-377。9。Chai JN,Peng Y,Rengarajan S,Solomon BD,AI TL,Shen Z等。螺旋杆菌是体内平衡和炎症中结肠T细胞反应的有效驱动因素。SCI免疫。 2017; 2(13):EAAL5068。 10。 Ivanov II,Atarashi K,Manel N,Brodie EL,Shima T,Karaoz U等。 通过分段丝状细菌诱导肠道Th17细胞。 单元格。 2009; 139(3):485-498。 11。SCI免疫。2017; 2(13):EAAL5068。 10。 Ivanov II,Atarashi K,Manel N,Brodie EL,Shima T,Karaoz U等。 通过分段丝状细菌诱导肠道Th17细胞。 单元格。 2009; 139(3):485-498。 11。2017; 2(13):EAAL5068。10。Ivanov II,Atarashi K,Manel N,Brodie EL,Shima T,Karaoz U等。 通过分段丝状细菌诱导肠道Th17细胞。 单元格。 2009; 139(3):485-498。 11。Ivanov II,Atarashi K,Manel N,Brodie EL,Shima T,Karaoz U等。通过分段丝状细菌诱导肠道Th17细胞。单元格。2009; 139(3):485-498。 11。2009; 139(3):485-498。11。Bilate AM,Bousbaine D,Mesin L,Agudelo M,Leube J,Kratzert A等。来自克隆T细胞前体的调节和上皮内T细胞的组织特异性出现。SCI免疫。 2016; 1(2):EAAF7471。 12。 Bilate Am,Lafaille JJ。 在免疫耐受性中诱导的CD4+ FOXP3+调节T细胞。 Annu Rev Immunol。 2012; 30:733-758。 13。 页岩M,Schiering C,Powrie F.肠炎中的CD 4+ T细胞子集。 Immunol Rev. 2013; 252(1):164-182。 14。 Sujino T,伦敦M,Hoytema van Konijnenburg DP,Rendon T,Buch T,Silva HM等。 调节和上皮内CD4+ T细胞的组织适应控制肠道炎症。 科学。 2016; 352(6293):1581-1586。 15。 Reis BS,Rogoz A,Costa-Pinto FA,Taniuchi I,MucidaD。转录因子Runx3和ThPOK的相互表达调节肠道CD4+ T细胞免疫。 nat免疫。 2013; 14(3):271-280。SCI免疫。2016; 1(2):EAAF7471。 12。 Bilate Am,Lafaille JJ。 在免疫耐受性中诱导的CD4+ FOXP3+调节T细胞。 Annu Rev Immunol。 2012; 30:733-758。 13。 页岩M,Schiering C,Powrie F.肠炎中的CD 4+ T细胞子集。 Immunol Rev. 2013; 252(1):164-182。 14。 Sujino T,伦敦M,Hoytema van Konijnenburg DP,Rendon T,Buch T,Silva HM等。 调节和上皮内CD4+ T细胞的组织适应控制肠道炎症。 科学。 2016; 352(6293):1581-1586。 15。 Reis BS,Rogoz A,Costa-Pinto FA,Taniuchi I,MucidaD。转录因子Runx3和ThPOK的相互表达调节肠道CD4+ T细胞免疫。 nat免疫。 2013; 14(3):271-280。2016; 1(2):EAAF7471。12。Bilate Am,Lafaille JJ。在免疫耐受性中诱导的CD4+ FOXP3+调节T细胞。Annu Rev Immunol。 2012; 30:733-758。 13。 页岩M,Schiering C,Powrie F.肠炎中的CD 4+ T细胞子集。 Immunol Rev. 2013; 252(1):164-182。 14。 Sujino T,伦敦M,Hoytema van Konijnenburg DP,Rendon T,Buch T,Silva HM等。 调节和上皮内CD4+ T细胞的组织适应控制肠道炎症。 科学。 2016; 352(6293):1581-1586。 15。 Reis BS,Rogoz A,Costa-Pinto FA,Taniuchi I,MucidaD。转录因子Runx3和ThPOK的相互表达调节肠道CD4+ T细胞免疫。 nat免疫。 2013; 14(3):271-280。Annu Rev Immunol。2012; 30:733-758。 13。 页岩M,Schiering C,Powrie F.肠炎中的CD 4+ T细胞子集。 Immunol Rev. 2013; 252(1):164-182。 14。 Sujino T,伦敦M,Hoytema van Konijnenburg DP,Rendon T,Buch T,Silva HM等。 调节和上皮内CD4+ T细胞的组织适应控制肠道炎症。 科学。 2016; 352(6293):1581-1586。 15。 Reis BS,Rogoz A,Costa-Pinto FA,Taniuchi I,MucidaD。转录因子Runx3和ThPOK的相互表达调节肠道CD4+ T细胞免疫。 nat免疫。 2013; 14(3):271-280。2012; 30:733-758。13。页岩M,Schiering C,Powrie F.肠炎中的CD 4+ T细胞子集。Immunol Rev.2013; 252(1):164-182。 14。 Sujino T,伦敦M,Hoytema van Konijnenburg DP,Rendon T,Buch T,Silva HM等。 调节和上皮内CD4+ T细胞的组织适应控制肠道炎症。 科学。 2016; 352(6293):1581-1586。 15。 Reis BS,Rogoz A,Costa-Pinto FA,Taniuchi I,MucidaD。转录因子Runx3和ThPOK的相互表达调节肠道CD4+ T细胞免疫。 nat免疫。 2013; 14(3):271-280。2013; 252(1):164-182。14。Sujino T,伦敦M,Hoytema van Konijnenburg DP,Rendon T,Buch T,Silva HM等。调节和上皮内CD4+ T细胞的组织适应控制肠道炎症。科学。2016; 352(6293):1581-1586。 15。 Reis BS,Rogoz A,Costa-Pinto FA,Taniuchi I,MucidaD。转录因子Runx3和ThPOK的相互表达调节肠道CD4+ T细胞免疫。 nat免疫。 2013; 14(3):271-280。2016; 352(6293):1581-1586。15。Reis BS,Rogoz A,Costa-Pinto FA,Taniuchi I,MucidaD。转录因子Runx3和ThPOK的相互表达调节肠道CD4+ T细胞免疫。nat免疫。2013; 14(3):271-280。2013; 14(3):271-280。
摘要 可以使用 16S rRNA 荧光原位杂交 (FISH) 研究微生物种群的净增长,即丰度随时间的变化。然而,这种方法不能区分死亡率和细胞分裂率。我们结合稀释培养实验,将基于 FISH 的图像细胞术用于研究两种不同的浮游植物水华中四种细菌类群的净增长、细胞分裂和死亡率:寡营养菌 SAR11 和 SAR86 以及富营养菌门拟杆菌门及其 Aurantivirga 属。细胞体积、核糖体含量和细胞分裂频率 (FDC) 随时间共同变化。在这三者中,FDC 是计算所选类群细胞分裂率的最合适的预测因子。 SAR86 的 FDC 衍生细胞分裂率高达 0.8/天,Aurantivirga 的 FDC 衍生细胞分裂率高达 1.9/天,这与寡养生物和富养生物的预期不同。令人惊讶的是,SAR11 的细胞分裂率也达到了高达 1.9/天的高水平,甚至在浮游植物大量繁殖之前也是如此。对于所有四个分类群,丰度衍生的净增长率(-0.6 到 0.5/天)比细胞分裂率低一个数量级。因此,死亡率与细胞分裂率相当高,表明大约 90% 的细菌产物在 1 天内被回收,没有明显的时间滞后。我们的研究表明,确定特定分类单元的细胞分裂率是对基于组学的工具的补充,并为包括自下而上和自上而下控制在内的单个细菌生长策略提供了前所未有的线索。
摘要:该系统评价旨在识别人类寿命的不同肠道微生物组轮廓,并将此类特征与身体组成相关联。PubMed,Scopus和Cochrane从成立到2022年3月。六十个研究已包括在这项系统的综述中。总体而言,超重参与者的肠道微生物组组成表现出降低的α多样性,类细菌植物及其分类单元的水平降低,以及与正常参与者相比。其他身体组成参数显示出相似的相关性。脂肪质量和腰围与企业类群呈正相关,并与细菌群体负相关。相反,瘦体重和肌肉质量表现出与细菌分类群的正相关。值得注意的是,这些相关性在运动员中比肥胖和正常体重个体更为明显。在所有年龄段的超重个人或运动员中,肠道微生物组的组成显然是不同的,而前者倾向于降低细菌群和富公司的分类单元,而与运动员有关的逆转关系。需要进一步的研究来探索整个人类寿命的能量摄入,身体组成和肠道微生物组之间的动态关系。
反刍动物消化道的微生物是一个复杂的生态系统,其主要作用在于发酵饲料的成分并保护人体免受有条件致病性和致病性微生物的定殖。在各种营养素的饮食中,微生物与宿主体与宿主体的相互作用使对它们对消化过程,免疫力和动物生产率的影响的理解变得复杂。该研究的目的是使用NGS序列的方法研究Edilbaevsky Breat的RAM的微生物群落的组成和功能谱,并使用基于基本痕量元素的有机添加剂富含有机添加剂的饮食而生长。该研究的目的是Edilbaevskoy Breed的7个月大的Baranchiki的尾含量,该饮食的一部分是基于ioddar-Zn和Dafs-25的微元素的饲料添加剂。进行了4组动物进行实验:对照(OR),I实验(或 + Yoddar-Zn),II经验丰富(OR + DAFS-25),III经验丰富(或 + yoddar-Zn + dafs-25)。使用现代的NGS序列化分子遗传学方法研究了围巾微生物瘤的组成和功能谱。使用Qiime2 VER软件执行的数据的生物信息学分析。2020.8。根据标准方法进行了结果的统计处理。实验的结果表明饮食中使用的进料添加剂对生长和发育指标的积极影响。最大的班次 div>在III实验组的动物中获得了最大的活体重指标,其中包括iodar-Zn和DAFS-25的饲料添加剂的饮食。微生物瘤的细菌FIL FIREICUTES的比率发生了变化:细菌植物,这表明代谢过程的潜在位移以增加乙酸酯的飞行脂肪酸比率:丙酸。
在一项涉及 91 名 2 至 6 岁儿童的研究中,研究人员发现,每日服用益生菌 DE111® 可积极调节“肠道微生物组特征,而不会改变整体微生物组平衡”。在每天服用 10 亿菌落形成单位 (CFU) 8 周后,研究人员观察到与安慰剂组儿童相比,“门级的 α 多样性增加,表明微生物组的功能多样性扩大”。具体而言,研究作者报告称,益生菌组在属级发现了九种差异丰富的分类群,其中六种(拟杆菌门)大量增长,而三种(厚壁菌门)减少。服用枯草芽孢杆菌 DE111® 的儿童的微生物组中厚壁菌门/拟杆菌门比例的这种调节可能是健康肠道功能的积极指征。8
短链脂肪酸(链长最多为6个碳原子的单羧酸)是肠Bacte RIA对未消化的多糖发酵的副产品。在这些化合物中,乙酸盐,丙酸和丁酸酯在胃肠道中占主导地位,占总数的95%以上,其中构成了甲酸盐,脱脂,粘胶和其他组成剩余部分。13醋酸酯和丙酸酯主要由菌叶植物的代表产生,而富菌的细菌(包括芽孢杆菌和乳酸杆菌的呈现)是Butyrate 14的主要来源,是丁酸酯14的主要来源。15过量脂肪和糖消耗不足,而西方饮食中的典型摄入量则破坏了均衡的公司/细菌植物比率。这伴随着肠道障碍的渗透性,这有助于炎症和免疫疾病的发展。16短链脂肪酸的量也随着使用广谱抗生素的使用而导致的肠道营养不良的发展减少。17
肠道微生物群可能参与肠易激综合征(IBS)类似于溃疡性结肠炎(UC)患者中的类似症状。面包是饮食纤维的重要来源,也是潜在的益生元来源。与使用现代阐述程序相比,使用传统阐述来评估烘烤的面包的效果,在改变肠道微生物群和缓解静态溃疡性结肠炎患者中的IBS样症状方面。31名UC患者在IBS样症状中缓解症状,随机分配给饮食干预,用200克/d的治疗面包或对照面包进行了8周。使用问卷和炎症参数测试临床症状。通过16S rRNA基因的高通量测序评估粪便菌群组成的变化。在治疗和对照面包干预后观察到IBS样症状的降低,因为IBS-症状严重程度评分值的降低(P值<0.001)和腹痛的存在(P值<0.001)。处理面包可降低企业/杆菌的比率(p-值= 0.058)。此外,由于没有腹痛的患者略有减少,因此,粉状/杆菌的比率似乎与改善IBS样症状有关(p-值= 0.059)所暗示。在任何分类学水平上都没有发现具有显着的差异丰度。使用传统阐述烘烤的面包的摄入量降低了Firmicutes/clacteroidetes的比率,这似乎与静止溃疡性结肠炎患者的IBS样症状有关。这些发现表明,传统的面包阐述具有潜在的益生元效应,以改善肠道健康(临床研究。
引言高血压个体通常表现出与正常人的微生物多样性和丰富性相比(1)。这种条件是由香农指数的减少和Firmicutes/ Bacteroidetes比率的增加表示的,这是肠道菌群不平衡的标志(2)。高血压个体倾向于具有较高的革兰氏阴性细菌,尤其是来自家族的细菌植物和否定性(3),并且革兰氏阳性细菌的丰度较低,例如来自Ruminocococacaceae和Lachnospireceae家族的细菌,这些细菌因产生短脂肪酸(4)而闻名。高血压个体的肠道菌群的特征是短链脂肪酸产生细菌(例如杆菌和prevotella)的降低,以及炎症相关细菌(例如乳乳杆菌)的增加(5)。同时,高血压个体通常表现出炎症细胞因子和高脂血症的水平升高,这与肠道菌群改变有关(6)。肠道菌群组成也受饮食模式的影响。高血压个体可能有不同的饮食习惯,这会导致观察到的肠道菌群差异(7)。这些差异表明,肠道菌群在高血压的发展和进展中起着至关重要的作用,针对肠道菌群的干预措施可能对管理高血压有益(8)。在这次微型综述中,我们旨在讨论肠道菌群营养不良对高血压加剧的潜在影响。
一项针对高级狗种群的新临床研究5表明,有可能恢复失调的肠肠菌菌群,尤其是在增加细菌植物,梭菌和粪便核酸杆菌和粪便杆菌prausnitzii方面,在健康的成年犬中存在很大的丰富性,并且通常在健康的成年犬中存在,并且已知以脂肪降低。并行,富有的高级®可以减轻免疫衰老生物标志物,主要是通过改善CD4+/CD8+ T细胞比率,显示出导致对免疫的反应不佳和严重感染的主要风险的老年人群的下降。
肠道菌群在控制2型糖尿病(T2D)中起重要作用。糙米(BR)具有较高的纤维和镁含量,并且比白米(WR)的血糖指数低,因此可能可以改善肠道菌群,短链脂肪酸(SCFA)和代谢标记物。这项研究旨在比较肠道菌群概况,SCFA水平,以及给定12周基于BR和WR的饮食的T2D患者的人体测量和实验室代谢标记的变化。这项实验前测试设计研究使用目的抽样方法招募了17名口服抗糖尿病药物(OAD)的女性糖尿病患者。对受试者进行了12周的基于BR的饮食,然后进行洗涤2周,以及基于WR的饮食12周。肠道菌群谱和SCFA。在BR干预后,受试者的浓汤,较低的细菌植物,较高的较低的菌类,较高的脂肪菌与菌植物(f/b)比和丁酸酯水平较高。此外,BR显着改善了人体测量和实验室代谢标记以及胰岛素抵抗(HOMA-IR)指数的稳态模型评估(P <0.05)。T2D患者接受了基于BR的饮食12周的肠道菌群谱,丁酸水平,人体测量和实验室代谢标记和胰岛素抵抗的更好。