这篇全面的评论探讨了基因组学和生物信息学方法的最新进步,用于研究金黄色葡萄球菌在特应性皮炎(AD)中的表现。它着重于关键方面,以了解该细菌在AD中的作用。首先,它检查了金黄色葡萄球菌中的基因如何控制以及它们如何影响AD。它还研究了金黄色葡萄球菌基因如何受到其DNA序列以外的因素的影响较少的领域。该评论还调查了金黄色葡萄球菌如何在AD中定居于皮肤以及它如何设法留在那里。这阐明了可能进行干预和停止其存在的方法。此外,它解决了金黄色葡萄球菌对治疗AD相关感染的药物的抗性问题。它将这种抵抗力的原因及其如何影响潜在的治疗方法。此外,该评论强调了基于计算机的工具在研究金黄色葡萄球菌基因中的关键作用。它评估了用于理解与AD相关的金黄色葡萄球菌相关的复杂遗传信息的不同方法。通过将遗传学等不同区域结合在一起,细菌如何生活在皮肤上,耐药性和工具科学家使用的工具,本综述提供了对AD中的金黄色葡萄球菌的完全了解。
遗传性癌症的临床管理依赖于早期诊断和风险分层,这得益于基因检测。识别高风险基因中的种系突变可以实施量身定制的监测和预防策略。例如,BRCA1/2 突变携带者可以接受 MRI 增强筛查、预防性手术或化学预防以降低癌症风险。同样,患有林奇综合征的人可以从定期结肠镜检查中受益,在某些情况下,还可以通过预防性子宫切除术来预防子宫内膜癌。遗传咨询是遗传性癌症护理的一个综合组成部分,指导个人和家庭了解基因检测的影响。咨询解决了遗传性癌症风险的心理和伦理层面,包括偶然发现的可能性和对家庭成员的影响。
在形状方面,细菌可以分为三个主要类别:球菌(球形),杆菌(杆状)和螺旋拉(螺旋形)。他们的细胞壁也是分类的重要因素。大多数细菌具有两种类型的细胞壁之一:革兰氏阳性或革兰氏阴性含量,它们的区别是一种称为革兰氏污渍的染色技术。这种区别很重要,因为它可以确定细菌对抗生素的反应。
NIHR临床研究网络国家副医学总监Paul Dark教授Paul Dark教授描述了一项多中心,随机临床试验的协议,研究了两种炎症生物标志物 - 促炎性生物标志物 - procalcitonin(PCT)或C-RECALCTIVE蛋白(CRP)在医院的患者管理中使用两种炎症生物标志物(Procalciton)(PCT)或医院患者。我们期待这项大规模试验的最新信息,以查看我们是否更接近回答问题,如果接受PCT或CRP方案的指导,接受静脉注射抗生素治疗的患者是否接受静脉注射抗生素治疗,与标准护理相比,治疗持续时间可安全地减少。这将得到西伦敦大学研究负责人Hermine Mkrtchyan教授的见解,他的兴趣在于“一种健康”方法,使用新型技术来分析人类,动物和相关环境之间AMR基因的动态和相互作用。
有关更多信息,请联系:RNDR。Jan Bobek博士。 或mgr。 KateTi光Petùčková,博士。 Inst。 临床医学,第一学院医学院,查尔斯大学Studničkova7,布拉格2电话。 224968592,-8498 E -Mail:Jan.bobek@lf1.cuni.cz,katerina.petrickova@lf1.cuni.czJan Bobek博士。或mgr。KateTi光Petùčková,博士。Inst。临床医学,第一学院医学院,查尔斯大学Studničkova7,布拉格2电话。224968592,-8498 E -Mail:Jan.bobek@lf1.cuni.cz,katerina.petrickova@lf1.cuni.cz
系统生物学的第一门课程是为高级本科生和研究生设计的,以探索系统生物学领域。本书着重于计算模型及其对各种生物系统的应用。它介绍了代表系统生物学和合成生物学领域的前沿的建模,分子清单和案例研究的基础。这为执行标准系统生物学任务,了解现代文献并启动专门课程或项目提供了全面的背景和访问方法。系统生物学:综合介绍第三版本书是系统生物学的介绍,一个越来越多的领域,侧重于应用于各种生物医学现象的计算模型的设计和分析。首先要涵盖建模的基本原理,然后对将生物系统栩栩如生的分子清单进行回顾。这本书结束了案例研究,展示了系统生物学和合成生物学领域的前沿。文本探讨了医学和药物开发中生理建模,心脏功能和系统生物学等主题。它还深入研究了新兴领域,例如基于代理的和多尺度建模,生物设计原理,代谢通量分布,合成生物学,个性化医学和虚拟临床试验。在整本书中,读者将对系统生物学有一个全面的了解,包括访问执行标准任务,接触现代文学的方法以及启动专业项目的基础。本第三版已对文本进行了彻底的更新,为读者提供了该领域的最新知识和见解。新版本具有默认模块,限制周期,混乱,参数估计,基因调节模型表示,Michaelis-Menten Rate Law,不同类型的抑制作用,滞后,系统适应,非线性无效,PBPK模型和基本模式的主题。该格式将教学文本与对主要文献的参考结合在一起,并伴随着实践练习,以供经验和开放式问题进行反思。第1章讨论了生物系统,还原主义和系统生物学,强调了该领域交流的重要性。第2章研究数学建模,涵盖目标,输入,初始探索,模型选择,设计,结构,方程,参数估计,分析,诊断,一致性,鲁棒性,鲁棒性,探索,验证,验证,使用,应用,扩展,扩展,改进和大规模评估。Chapter 3 focuses on static network models, including strategies of analysis, interaction graphs, properties of graphs, small-world networks, dependencies among network components, causality analysis, mutual information, Bayesian reconstruction, application to signaling networks, static metabolic networks, stoichiometric networks, variants of stoichiometric analysis, metabolic network reconstruction, and metabolic control analysis.第5章通过涉及单个变量或几个变量的线性回归探索线性系统的参数估计。本章以测量基因表达及其定位的检查结束。Chapter 4 discusses the mathematics of biological systems, covering discrete linear systems models, recursive deterministic models, recursive stochastic models, discrete nonlinear systems, continuous linear systems, linear differential equations, linearized models, continuous nonlinear systems, ad hoc models, canonical models, more complicated dynamical systems descriptions, standard analyses of biological systems models, steady-state analysis, stability analysis, parameter灵敏度,系统动力学分析,限制周期和混乱的吸引子。它还涵盖了全面的网格搜索,非线性回归,遗传算法,其他随机算法,典型的挑战以及微分方程系统的结构识别。第6章讨论了基因系统,涵盖了DNA和RNA的主要教条,关键特性,化学和物理特征,大小,形状,基础,基础组成,复制,转录,翻译,调节,控制机制,基因的调控,蛋白质功能的调控,蛋白质功能,信号通路,基因网络,网络组成,组成,网络,组成,组成,组合和分析网络和分析。本书探讨了各种生物系统,包括DNA,基因和非编码DNA,以及真核DNA的填料和调节。RNA的一章深入到Messenger RNA(mRNA),转移RNA(tRNA),核糖体RNA(rRNA)和小RNA,然后讨论RNA病毒和基因调节。基因表达详细介绍,主题包括LAC操纵子,调节模式,转录因子和基因调节模型。以下各章关注蛋白质系统,讨论蛋白质的化学和物理特征,实验蛋白质结构的确定和可视化,酶,转运蛋白以及信号传导以及允许蛋白质。蛋白质,以及目前在蛋白质研究,蛋白质组学,结构功能预测,定位以及蛋白质活性和动态方面面临的挑战。代谢系统涵盖在第8章中,其中包括生化反应,基本反应的数学公式,速率定律,途径和途径系统。本章还讨论了生物化学和代谢组学,计算途径分析的资源,控制途径系统的控制,代谢组数据生成方法,采样,提取,分离,检测,检测,通量分析以及实验数据的动态模型。第9章探讨了信号系统,包括使用布尔网络和网络推理的信号转导网络的静态模型。信号转导系统以微分方程为模型,涵盖了诸如双重性和磁滞,两组分组信号系统,有丝分裂原激活的蛋白激酶级联反应,适应性和其他信号系统等主题。第10章深入人口系统,讨论了人口增长的传统模型,更复杂的增长现象,外部扰动下的种群动态,亚种群的分析,相互作用的人群,相位平面分析以及更复杂的人口动态模型。最后一章是酵母中基因组,蛋白质和代谢产物数据综合分析的案例研究。它回顾了模型的起源,讨论了酵母中的热应激反应,分析海藻糖周期,设计和诊断代谢途径模型,解释了葡萄糖动态,检查基因表达并介绍了多尺度分析和Multiscalar模型设计。第12章提供了使用心脏作为例证的生理建模的示例。它涵盖了量表和建模方法的层次结构,心脏解剖结构的基础知识,在各个级别(器官,组织,细胞)上建模目标,振荡的简单模型,振荡的黑盒模型以及从黑盒中的过渡到有意义的模型,包括电化学。本章讨论了系统生物学的各个方面,包括: *对心肌细胞电化学过程的生物物理描述 *静止的潜力和动作潜力以及这些过程的模型 *问题 *问题 *与重复心跳和失败的心脏相关的过程,并重点介绍了基于Biocartiol of Meciatoliviodial of Medial of Systrimic of Meciatolion of Medial of Systrologial Systems,涵盖了分子的范围:疾病以及个性化医学和预测性健康 *系统生物学在药物开发中的作用,从计算靶标和铅鉴定到使用动态模型的药代动力学建模和途径筛查,本章还深入研究了生物系统的设计原理,包括网络图案,操作原理,以目标为导向的操纵。它还通过代谢工程,基因回路和系统生物学在药物开发中的新作用来探讨合成生物学。最后,本章介绍了系统生物学中的新兴主题,例如: *对复杂疾病,炎症,创伤,生物的建模需求及其与环境的相互作用 *数据建模的研究管道对生物学理论或几种理论。
农业基因工程已成为解决现代最紧迫挑战(包括粮食安全、环境可持续性和营养不良)的一种突破性方法。通过将植物科学与分子生物学相结合,这项创新技术能够开发出更能抵御环境压力、富含必需营养素、更少依赖农药和化肥等化学投入的作物。抗旱玉米、抗虫 Bt 棉花和生物强化黄金大米等例子凸显了转基因生物 (GMO) 解决饥饿和营养不足等全球问题的潜力。此外,基因工程可以通过节约用水、减少温室气体排放和优化土地利用来促进可持续农业。然而,采用这项技术并非没有道德和环境问题,包括生物多样性影响、企业垄断和公众对转基因生物的怀疑。通过透明的研究、强有力的监管监督和公平获取创新来应对这些挑战至关重要。通过负责任地利用基因工程的潜力,农业可以转变为一个更可持续、更公平的系统,能够养活不断增长的全球人口,同时保护自然资源并促进环境健康。© 2025 Hossen MM。这是一篇开放获取的文章,根据知识共享署名 4.0 国际许可证 (www.creativecommons.org/licenses/by/4.0) 分发,允许在任何媒体中不受限制地使用、分发和复制,前提是正确引用原始作品。
HIV感染暗示了人体中的一系列组织,从肛门生殖道中的病毒反式传教开始,随后持续存在于淋巴组织和大脑中。尽管使用孤立细胞的研究对我们了解艾滋病毒感染有显着贡献,但组织微环境的特征是一系列因素的复杂相互作用,所有这些都会影响感染的过程,但在离体研究中却被遗漏了。为了解决这一知识差距,有必要使用基于成像的方法来研究感染动力学和宿主免疫反应。在过去的十年中,新兴的成像技术不断地重新罚款,无论是根据目标的范围和范围而言。这样做,这就打开了可以通过原位研究来回答的新问题。本评论讨论了现在可用的高维成像方式,以及它们用于理解HIV感染的空间生物学的应用。
vii Martin, W., & Russell, MJ (2007). 论碱性热液喷口的生物化学起源。《皇家学会哲学学报 B:生物科学》,362(1486),1887-1926。viii Rampelotto, PH (2013). 极端微生物与极端环境。《生命》,3(3),482-485。