摘要 - 量子交换机(QSS)服务量子通信网络中量子端节点(QCN)提交的请求,这是一个具有挑战性的问题,这是一个挑战性的问题,由于已提交请求的异构保真要求和QCN有限的资源的异质性保真度要求。有效地确定给定QS提供了哪些请求,这是促进QCN应用程序(如量子数据中心)中的开发。但是,QS操作的最新作品已经忽略了这个关联问题,并且主要集中在具有单个QS的QCN上。在本文中,QCN中的请求-QS关联问题是作为一种匹配游戏,可捕获有限的QCN资源,异质应用程序 - 特定的保真度要求以及对不同QS操作的调度。为了解决此游戏,提出了一个量表稳定的request-QS协会(RQSA)算法,同时考虑部分QCN信息可用性。进行了广泛的模拟,以验证拟议的RQSA算法的有效性。仿真结果表明,拟议的RQSA算法就服务请求的百分比和总体实现的忠诚度而实现了几乎最佳的(5%以内)的性能,同时表现优于基准贪婪的解决方案超过13%。此外,提出的RQSA算法被证明是可扩展的,即使QCN的大小增加,也可以保持其近乎最佳的性能。I. i ntroduction量子通信网络(QCN)被视为未来通信技术的支柱,因为它们在安全性,感知能力和计算能力方面具有优势。QCN依赖于Einstein-Podolsky-Rosen(EPR)的创建和分布,这是遥远QCN节点之间的纠缠量子状态[1]。每个EPR对由两个固有相关的光子组成,每个光子都会转移到QCN节点以建立端到端(E2E)纠缠连接。然而,纠缠光子的脆弱性质导致指数损失,随着量子通道(例如光纤)的行驶距离而增加。因此,需要中间量子中继器节点将长距离分为较短的片段,通过对纠缠的光子进行连接以连接遥远的QCN节点[2]。当此类中继器与多个QCN节点共享多个EPR对以创建E2E连接时,它们被称为量子开关(QSS)。
参考阅读:[1] H. Akagi,E. Watanabe 和 M. Aredes,“瞬时功率理论及其在电源调节中的应用”,IEEE Press,2007 年,第 3 章。
载流子倍增因子的特性是设计坚固可靠的功率半导体器件以及评估其对地面宇宙辐射引起故障的敏感性的关键问题。本文提出了一种低温恒温装置,以将使用来自 Am 241 放射源的软伽马辐射的非侵入式电荷谱技术应用于广泛的 Si 和 SiC 器件。本文提供了一种关系,将液氮温度下测得的倍增因子转换为环境温度下测得的倍增因子。本文提出了一种专用的模拟方案,将 TCAD 和 Monte Carlo 工具结合起来,以预测收集到的电荷的光谱并定位倍增因子的热点。最后,在强调了电荷倍增因子与地面宇宙辐射下的功率器件故障率之间的相关性之后,建议将本技术作为评估安全操作区的补充方法。
我们先前鉴定出含塔林杆域的蛋白1(TLNRD1)是一种有效的肌动蛋白捆绑蛋白的体外。在这里,我们报告了TLNRD1在体内脉管系统中表达。其耗竭会导致体内血管异常和体外内皮细胞单层完整性的调节。我们证明,TLNRD1是通过与CCM2的直接相互作用的脑海绵状畸形(CCM)复合物的组成部分,该复合物是由CCM2中的疏水C-末端螺旋介导的,它附着在TLNRD1的四螺旋域上附着在疏水槽中。这种结合界面的破坏导致细胞核和肌动蛋白纤维中的CCM2和TLNRD1积累。我们的发现表明CCM2控制TLNRD1对细胞质的定位并抑制其肌动蛋白捆绑活性,并且CCM2-TLNRD1相互作用会影响内皮肌动蛋白应激纤维和局灶性粘附形成。基于这些结果,我们提出了一种新的途径,CCM复合物通过该途径调节肌动蛋白细胞骨架和血管完整性。
13) Levi Nwokafor 先生,独立石油营销商 - 成员 公用事业收费委员会执行秘书 - 成员 14) Adams Oshiomhole 先生,尼日利亚劳工大会主席 - 成员 15) Anne Okigbo 女士,世界银行代理常驻代表 - 成员 16) Chamberlain Oyibo 先生,GMD - 成员 17) 工程师 MM Ibrahim - 成员 18) Onaolapo Soleye 博士 - 成员 -< 19) 律师 Sola Adepetun - 成员 20) Nuhu Obaje 博士,地质学家 - 成员 21) Yinka Omorogbe 先生,学者 - 成员 22) Donu Kogbara 女士,记者 - 成员 v23) BPE 总干事 - 委员会协调员 24) AA Udofia 先生,BPE - 秘书
酪蛋白激酶 1 (CK1) 是丝氨酸/苏氨酸蛋白激酶家族,在细胞增殖、存活和代谢等各种细胞过程中发挥着至关重要的作用。CK1 表达失调与多种癌症的发展和进展有关,因此成为抗癌治疗的一个有吸引力的靶点。在这篇综述中,我们概述了目前用于靶向 CK1 进行癌症治疗的策略,并讨论了该领域的未来前景。我们重点介绍了不同的方法,包括小分子抑制剂、RNA 干扰、基因组编辑和免疫疗法,这些方法在靶向调节癌细胞中的 CK1 活性方面具有巨大潜力。此外,我们讨论了与靶向 CK1 相关的挑战,并提出了克服这些障碍的潜在策略。总体而言,靶向 CK1 作为癌症治疗的治疗策略具有巨大的前景,值得进一步研究这一领域。
这个项目下的学生要感谢那些为完成这项研究的贡献的人。首先,我们要感谢德里大学的Sri Venkateswara学院给予我们这个学习机会,这帮助我们开发了宝贵的毅力,团队合作,团队合作,韧性,合作,最重要的是无尽的知识追求。第二,我们要向莫妮卡·梅纳(Monika Meena)女士表示深切而真诚的感谢,以提供宝贵的指导,支持,建议和规定,从而有助于这项研究的完成和成功。在她的指导下工作和学习是一种极大的荣幸和荣幸。我们还要对父母的无休止的爱,祈祷和支持表示最大的感谢。如果没有任何时间的支持,这是不可能的。非常感谢全能的上帝给了我们进行这项研究的力量,知识,能力和机会。最后,我们感谢所有支持我们直接或间接完成研究工作的人。