拟议的研究涉及“主题领域 1:将海藻转化为低碳燃料和生物产品”,并计划开发一种低成本连续催化热液液化 (CHTL) 工艺 (TRL2→4),该工艺能够处理腐蚀性原料,以展示将褐藻 Saccharina latissima (糖海带) 中的多糖最佳转化为低碳、稳定且高能量密度 (>35 MJ/kg) 的生物油/生物原油前体 (产量 >45 wt.%),用于可持续航空燃料 (SAF)。为了进一步提高可行性和可持续性,我们建议探索 i) 储存和预处理方法,以保存多糖,同时降低灰分/盐含量;ii) CHTL 反应器系统的低成本涂层,以承受与连续、热效率高、高通量反应器运行相关的腐蚀性反应条件。我们工艺开发工作的总体目标是制定适用于农场藻类生物精炼模式的糖海带连续 CHTL 加工蓝图,使温室气体排放减少 60% 以上(石油原油基线)。所提出的方法解决了目前在以下方面的知识空白:1)节能高效的海带储存,保存多糖;2)HTL 原料的高盐/灰分管理;3)生物原油的稳定性和热值;4)连续水热加工以获得高能生物原油;5)反应器腐蚀问题,以解决在更高 TRL 下生产生物原油的可行性。该项目将使用由低成本 304H 钢制成的具有耐腐蚀涂层的 CHTL 反应器系统,展示从糖海带中连续生产 500 小时或 3 周的油,并在考虑 SAF 途径的同时,通过 TEA 和 LCA 展示经济和环境影响。
摘要:我们描述了一种生物电极系统,用于评估细胞色素P450 2E1(CYP2E1)对氯唑唑酮的电催化活性。使用人CYP2E1,细胞色素P450还原酶(CPR)和细胞色素b 5(Cyt B 5),使用了系统的一个电极将Baccosomes immotimbilize Baccosomes immotimbilize Baccosomes。第二个电极用于用平方波伏安法注册,通过其直接的电化学氧化来量化CYP2E1产生的6-羟基氯唑唑酮。Using this system, we determined the steady-state kinetic parameters of chlorzoxazone hydroxylation by CYP2E1 of Bactosomes immobilized on the electrode: the maximal reaction rate ( V max ) was 1.64 ± 0.08 min − 1 , and the Michaelis constant ( K M ) was 78 ± 9 µ M. We studied the electrochemical characteristics of immobilized Bactosomes and have揭示了从电极中的电子转移既出现到CPR的平均假体和CYP2E1和CYT B 5的血红素铁离子。此外,已经证明CPR具有激活CYP2E1电催化活性向卫生的能力,这可能是通过分子间电子从CPR的电化学还原形式转移到CYP2E1血红素铁离子。
设计高活性催化剂的关键是确定活性的来源。然而,这仍然是一个挑战。[8,9] 特定催化剂的活性传统上与其表面性质有关。因此,具有大表面积、良好导电性和高迁移率的材料被认为是良好的催化剂,因为它们具有丰富的活性位点,有利于氧化还原反应中中间体的吸附和电子转移。这是广泛使用的催化剂合成策略的动机,例如纳米结构化、掺杂、合金化或添加缺陷。每种方法都旨在暴露优先晶体表面或对其进行工程改造以提高其活性。[10–12] 然而,从设计的角度快速准确地确定活性位点的位置仍然是一项艰巨的任务,这使得从许多潜在的有趣材料中发现高性能催化剂成为一项挑战。拓扑材料具有稳健的表面态和高迁移率的无质量电子。 [13–15] 此外,无论是从理论还是实验角度,许多最先进的催化剂(如 Pt、Pd、Cu、Au、IrO 2 和 RuO 2 )都被认为具有拓扑衍生的表面态 (TSS)。[16,17] 因此,有证据表明 TSS 在催化反应中发挥着重要作用。[18,19] 此类状态主要由
设计酶具有基础和技术意义。实验定向进化仍然有很大的局限性,计算方法是一条补充途径。设计的酶应满足多个标准:稳定性、底物结合、过渡态结合。这种多目标设计在计算上具有挑战性。最近的两项研究使用自适应重要性抽样蒙特卡罗重新设计蛋白质以进行配体结合。通过首先平坦化载脂蛋白的能量景观,他们获得了结合状态的正设计和非结合状态的负设计。我们现在已将该方法扩展到设计一种酶以进行特定的过渡态结合,即其催化能力。我们考虑了甲硫氨酰-tRNA 合成酶 (MetRS),它将甲硫氨酸 (Met) 附着到其同源 tRNA 上,从而建立密码子身份。此前,MetRS 和其他合成酶已通过实验定向进化重新设计,以接受非规范氨基酸作为底物,从而导致遗传密码扩展。在这里,我们通过计算重新设计了 MetRS,使其能够结合多种配体:Met 类似物叠氮亮氨酸、甲硫氨酰腺苷酸 (MetAMP) 以及形成 MetAMP 生成过渡态的活化配体。通过设计计算恢复了已知具有叠氮亮氨酸活性的酶突变体,并对预测结合 MetAMP 的 17 种突变体进行了实验表征,发现它们均具有活性。预测具有低活化自由能的突变体在 MetAMP 生成中被发现具有活性,并且预测的反应速率与实验值非常吻合。我们建议本方法应成为计算酶设计的范例。
CRISPR-CAS9是一种尖端的基因组编辑技术,它使用核酸内切酶Cas9在基因组所需的位点引入突变。这个革命性的工具有望治疗无数的人类遗传疾病。然而,尚未确定DNA裂解的分子基础,这是基因组编辑的基本步骤。在这里,使用量子 - 古细胞分子动力学(MD)和自由能方法来披露CRISPR-CAS9中磷酸二酯键裂解的两级依赖机理。从头算MD揭示了Mg 2+磅重的RUVC活动位点的构象重排,这需要H983的搬迁作为一般基础。然后,DNA的裂解通过两个Mg 2+离子的联合动力学从根本上进行的一致的关联途径进行。这阐明了先前有争议的实验证据,这些证据无法完全确定保守的H983和金属簇构象的催化作用。与其他两级依赖性酶的比较支持确定的机制,并提出了基因组编辑和重组的常见催化策略。总体而言,描述的非目标DNA裂解催化
抽象的合成生物学和定向进化是现代生物技术的最前沿,为提高工业应用的酶催化效率提供了前所未有的机会。这项研究提供了这些领域的全面概述,首先是对合成生物学原理和定向进化的基本原理的介绍,强调了它们在改善酶性能方面的重要性。我们探讨了有向进化的各种方法,包括随机和位置定向的诱变技术和高通量筛选方法,这对于鉴定具有出色催化特性的变体至关重要。该研究还深入研究了彻底改变了定向进化的合成生物学工具,例如CRISPR/CAS系统,重组DNA技术和用于酶设计的计算工具。通过详细的案例研究,我们突出了这些方法在增强生物燃料生产,药物合成,食品行业应用和环境生物修复方面的成功应用。讨论扩展到酶工程的最新进展,展示了催化效率提高的显着成就以及合成生物学与定向进化的整合。我们还解决了该领域的挑战和局限性,包括技术障碍,可伸缩性问题和道德考虑。最后,我们概述了未来的观点,专注于基因组编辑和人工智能等新兴技术,这些技术具有进一步推进酶工程的潜力。这项研究以对合成生物学的未来和工业生物技术的指导进化的长期目标和意义的反思结束。关键词合成生物学;定向进化;酶催化效率;蛋白质工程;工业生物技术
摘要:本研究采用简单的一步水热合成方法合成了定义明确的稳定化 CuO 纳米花瓣,并通过先进的纳米表征技术研究了其表面,以增强光学和催化性能。透射电子显微镜 (TEM) 分析表征证实了高结晶度 CuO 纳米花瓣的存在,其平均长度和直径分别为 1611.96 nm 和 650.50 nm。纳米花瓣单分散,表面积大,形貌可控,并表现出具有单斜结构的纳米晶体性质。通过拉曼光谱和 X 射线衍射 (XRD) 图案确认了合成样品的相纯度。在 CuO 纳米花瓣中观察到高达 800 nm 的明显宽吸收和增加的带隙。利用 X 射线光电子能谱 (XPS) 测得 CuO 表面的价带 (VB) 和导带 (CB) 位置分别为 + 0.7 和 − 1.03 eV,这对于高效的催化性能非常有前景。此外,在过氧化氢 (H 2 O 2 ) 存在下获得的 CuO 纳米花瓣对黑暗条件下降解亚甲蓝 (MB) 具有优异的催化活性,90 分钟后的降解率 > 99%,明显高于文献报道的水平。增强的催化活性归因于单分散 CuO 纳米花瓣的形貌可控、H 2 O 2 的协同作用和能带结构。这项工作为环境改善的广泛应用机会提供了一种新方法。
抽象的合成生物学和定向进化是现代生物技术的最前沿,为提高工业应用的酶催化效率提供了前所未有的机会。这项研究提供了这些领域的全面概述,首先是对合成生物学原理和定向进化的基本原理的介绍,强调了它们在改善酶性能方面的重要性。我们探讨了有向进化的各种方法,包括随机和位置定向的诱变技术和高通量筛选方法,这对于鉴定具有出色催化特性的变体至关重要。该研究还深入研究了彻底改变了定向进化的合成生物学工具,例如CRISPR/CAS系统,重组DNA技术和用于酶设计的计算工具。通过详细的案例研究,我们突出了这些方法在增强生物燃料生产,药物合成,食品行业应用和环境生物修复方面的成功应用。讨论扩展到酶工程的最新进展,展示了催化效率提高的显着成就以及合成生物学与定向进化的整合。我们还解决了该领域的挑战和局限性,包括技术障碍,可伸缩性问题和道德考虑。最后,我们概述了未来的观点,专注于基因组编辑和人工智能等新兴技术,这些技术具有进一步推进酶工程的潜力。这项研究以对合成生物学的未来和工业生物技术的指导进化的长期目标和意义的反思结束。关键词合成生物学;定向进化;酶催化效率;蛋白质工程;工业生物技术
抗击气候变化的紧迫性需要向可持续能源系统过渡,而先进的催化过程起着至关重要的作用(Blay-Roger等人。)。但是,这种过渡面临着重大挑战,包括对化石燃料的根深蒂固的依赖以及克服技术,经济和基础设施障碍的需要(Blay-Roger等,2024b)。最重要的挑战之一是对化石燃料的根深蒂固的依赖,它们深深地嵌入了我们的工业和经济体系中,在我们的工业和经济体系中,将生物量和CO等可再生资源转移到了诸如生物量和CO 2之类的可再生资源中,需要克服明显的技术,经济和基础结构障碍(Nawaz等,20223年)。从技术上讲,在轻度条件下运行的有效和选择性催化剂对于最大化产品产量和最大程度地减少废物至关重要,同时还可以解决催化剂的稳定性和对失活的耐药性(Fanhui等,2022)。在经济上,需要大量的初始投资和全面的生命周期评估,以确保新的催化过程的生存能力(Blay-Roger等,2024a)。从逻辑上讲,将这些过程集成到现有的工业框架中需要战略规划和政策支持。基础结构,过渡涉及对能网和供应链的显着变化,需要可靠的可再生原料和有效的转换方法。跨学科合作对于解决这些复杂挑战至关重要。催化是化学工业的核心,它正在发展,以通过将可再生资源转换为有价值的产品来满足可持续性原则。研究主题“通过碳足迹催化可持续燃料和衍生物”强调了催化技术的进步,这些技术减少了碳排放并增强了环境可持续性。本研究主题解决了提高催化效率和选择性的关键挑战和策略,从而有助于可持续且经济上可行的过程。它强调了高级材料科学和化学工程在培养中的重要性
未经处理的排放。从红泥中浸出有害物质会改变土壤和水的矿物质和微生物稳定性。4使用红泥作为化学合成中矿物质的来源可能会减少红泥积累的环境影响。红泥富含氧化铝,二氧化硅和铁矿物质,可以用作合成沸石,铝利酸盐和中孔材料的前体。5红泥已直接用作吸附剂6,并用作生产陶瓷的原材料,7种地球聚合物,8道路材料,9个铺一个铺在10,10涂层,11和催化剂。12由于其强大的碱性培养基,一些研究人员将红泥作为催化剂。li等。将红泥作为异质的芬顿催化剂利用。13 Hidayat等人。使用钙/红泥催化剂通过转移效应将废料油转化为生物柴油。14该催化剂是通过降低钙的金属盐溶液中的湿浸出的,以钙化为止。红泥中的高氧化铁含量被用作挥发性有机化合物的氧化15的氧化催化剂,并在水力碳热解过程中打破C - C和/或C - H键。16个热和化学物质在用于化学合成之前在红泥中分开杂质。在ZSM-5的合成中,用NaOH处理红色泥浆,以去除可能干扰沸石纯度的铁物种。17一些研究人员通过钙化处理红泥,以将红泥的结晶相变为无定形。18 HCl和H 2 SO 4用于减少