• 该项目的整体相关性体现在对 DOE EERE 氢燃料电池技术办公室 (HFCTO) 计划的影响上,特别是通过解决关键技术障碍来提高燃料电池的使用寿命,并实现氢和燃料电池技术的商业化和普及,目标是中型和重型卡车。这将降低温室气体排放和柴油发动机尾气污染物,建设清洁能源基础设施,加强美国制造业,并确定私营部门采用的途径。• 该项目有可能通过推广和实现可持续能源资源以及创建和维护国内制造基地和劳动力来大幅减少对化石燃料的依赖,以广泛部署氢技术,这符合 DOE 氢能计划、氢能地球计划和美国国家清洁氢战略和路线图。• 该项目的技术目标与 DOE 百万英里燃料电池卡车联盟一致,进展和结果将与联盟协调。• 该项目正在解决广泛应用氢燃料电池技术的主要技术障碍,并将通过以下方式对当前最先进的技术产生影响:
dz2 方向的键与 d xy 平面上的键结合,从而显著减轻 JT 畸变并抑制放电至 2.0 V 时的相变。按照这种策略,制备的尖晶石基正极实现了约 290 mA hg -1 的高可逆容量和高达 957 W h kg -1 的能量密度,并且循环稳定性得到改善。这项工作为传统尖晶石正极以低成本和可持续的方式应用于高能量密度 LIBs 找到了新的机会。关键词:锂离子电池;尖晶石基正极;局部结构连接;限制 Jahn-Teller 畸变;高能量密度。1. 简介为了应对电动汽车 (EV) 和电网储能系统 (PGESS) 对锂离子电池 (LIBs) 日益增长的需求,关键挑战之一是设计低成本、高能量密度的正极材料。 [1-3] 与现有的钴基和镍基层状正极材料(如 LiCoO 2 和 LiNi 1-xy Co x Mn y O 2(0 ≤ x+y ≤ 0.5))相比,锰基尖晶石氧化物 LiMn 2 O 4 因成本低、工作电压可接受而引起了广泛关注。[4-6] LiMn 2 O 4 已广泛应用于便携式移动电源,但由于能量密度低(<500 W h kg -1 ),未在电动汽车和 PGESS 中使用。用 Ni 部分替代 Mn,尖晶石 LiMn 2-x Ni x O 4(0< x <1)(LMNO)在接近 4.7 V 处表现出由 Ni 2+ /Ni 4+ 氧化还原对贡献的额外电位平台,将能量密度推高至 580 W h kg -1 。 [7-10] 尽管如此,由于只有尖晶石骨架上 8a 位上的锂离子可以可逆地嵌入/脱出,因此相对较低的容量(<140 mA hg -1 )可以进一步改善。 为了获得更高的容量,一种方法是将电位窗口从 3.0 - 4.8 V 扩展到 2.0 - 4.8 V,因为额外的锂离子可以在 3.0 V 以下嵌入 16c 位。 在此过程中,Mn 4+ 会还原到接近 Mn 3+ 的低价态,从而引起严重的 Jahn-Teller (JT) 畸变和从立方相到四方相(1T)的剧烈相变。 [11,12] 晶格对称性降低导致的晶格体积变化大和各向异性应变大,会在块体中引起裂纹,从而导致电接触丧失和结构降解,最终导致容量衰减。因此,通过抑制JT畸变来抑制立方-四方相变是提高3.0 V以下循环稳定性的关键。长期以来,尖晶石正极的研究主要集中在进一步提高结构稳定性,通过用Li、[6,13]Mg、[14,15]替代Mn或Ni
摘要:全固态电池(ASSB)的实际应用需要在低压下可靠运行,这仍然是一个重大挑战。在这项工作中,我们研究了由不同粒径固态电解质(SSE)组成的正极复合微结构的作用。由 LiNi 0.8 Co 0.1 Mn 0.1 O 2(NCM811)和细颗粒 Li 6 PS 5 Cl(LPSC)制成的复合材料在 NCM811 颗粒表面显示出更均匀的 SSE 分布,确保了紧密接触。此外,该复合材料的曲折度降低,从而增强了锂离子传导。这些微观结构优势可显着降低电荷转移电阻,有助于抑制低压条件下循环过程中的机械变形和电化学降解。因此,细 LPSC 正极复合材料在 2 MPa 的中等电堆压力下表现出增强的循环稳定性,优于粗 LPSC。我们的发现证实了微结构设计在实现低压条件下高性能 ASSB 运行中的重要作用。
与目前的替代化学方法相比,具有较低的自放电率(25 °C 时每年 < 0.5%)。 [1–4] 该系统的控制反应为 CF x + Li → LiF + C,是许多应用的主要候选材料之一,这些应用需要高能量密度,但电池无法充电,例如植入式医疗设备、军事和空间应用或其他极端环境。 [5] CF x 是一种非化学计量化合物,0.5 < x < 1.3,由于共价 CF 键的性质,表现出低电导率。 [1,6] F/C 比(x)取决于前体碳材料(如焦炭、石墨、纤维)的合成工艺和结构性质。 [6] 理想情况下,CF x 具有层状结构,其中每个碳原子与另外三个碳原子和一个氟原子结合,从而使结构的总能量最小化。[7,8]
摘要:可再生能源发电是应对能源消耗快速增长的一种有希望的解决方案。然而,可再生资源(如风能、太阳能和潮汐能)的可用性是不连续和暂时的,这对下一代大型储能装置的生产提出了新的要求。由于成本低、原材料极其丰富、安全性高和环境友好,水系可充电多价金属离子电池(AMMIB)最近引起了广泛关注。然而,一些挑战阻碍了 AMMIB 的发展,包括其电化学稳定性较窄、离子扩散动力学较差以及电极不稳定。过渡金属二硫属化物(TMD)因其独特的化学和物理性质而被广泛研究用于储能装置。层状 TMD 的宽层间距离对于离子扩散和插层来说是一种很有吸引力的特性。本综述重点介绍了 TMD 作为基于多价电荷载体(Zn 2+ 、Mg 2+ 和 Al 3+ )的水系可充电电池阴极材料的最新进展。通过本综述,重点介绍了高性能 AMMIB 的 TMD 材料的关键方面。此外,还讨论了开发改进型 TMD 的其他建议和策略,以启发新的研究方向。
摘要:受到磷酸锂(Lifepo 4)的巨大成功的鼓励,类似的Nafepo 4被预测显示出与LifePo 4相同的特性。使用具有钙化温度的变化和起始材料作为Na 2 Co 3和NaCl的来源的SOL-GEL方法,在Maricite相中的Nafepo 4材料合成。根据X射线衍射法(XRD)表征,所得的Nafepo 4 maricite相具有40%至85%的纯度。通过扫描电子显微镜(SEM)观察到的样品中颗粒的形态和晶粒大小倾向于在较高温度下钙化时增大。钙化温度的增加增加了样品中的Nafepo 4 Maricite相。阻抗数据分析表明,使用Na 2 CO 3的Na +离子的扩散系数和样品的电导率高于NaCl。这项全面的研究提供了一种可行的方法,并为连续研究NA-ON电池开辟了新的机会。
吩嗪是橡胶防老剂RT-base生产废渣的主要成分,仅我国RT-base废渣中吩嗪的年产量就超过1000吨,目前产生的吩嗪主要通过燃烧处理,每年释放出3500多吨二氧化碳和大量的氮氧化物。此外,吩嗪还是一种生物质可衍生的物质,可以从取之不尽的木质素衍生的邻苯二酚中高效、大量地生产。15,16吩嗪及其衍生物具有很强的氧化还原活性,被发现是优秀的OEM,包括阳极或阴极材料,在实际应用中显示出巨大的潜力。17 – 20其中,二氢吩嗪(DHP)衍生的正极材料表现出优异的性能,甚至与商业正极材料相媲美。 18,21 – 23 然而,该类材料的实际应用仍存在一些障碍需要解决。需要进一步努力提高它们的易获得性和比容量,即优化合成工艺和降低分子中非活性部分的比例。之前,我们报道了一种稳定但电容较低的 DHP 聚合物 (PVBPZ),其比容量仅为 95 mA hg − 1。PVBPZ 的低比容量主要是由于苄基部分在高电压下的电化学不稳定性,导致其无法利用第二氧化还原电位。因此,PVBPZ 只能
使用小型卫星进行低成本空间应用,高分辨率的地球观察,电磁波(X射线,红外线等)的观察器,从天体物体发出的电磁波(X射线,红外线等),甚至是从重力波的观察到。这些任务的推进系统要求包括较大的脉冲和功耗的全部冲动,高响应速度,3位数字投掷范围和低推力噪声。1)以低推进剂和功耗的大量总脉冲,具有发射阴极的离子元素适合作为主要推进系统。对于小型卫星应用,2)功耗是一个重要因素。是电子源的吸引力候选者,因为它的功耗低于传统的阴极(例如空心阴极,微波炉放电阴极或射电频率放电阴极),并且不构成推动力。 它也不涉及容易产生故障的部件,例如阀门和质量流控制器。 电流密度是电子源的吸引力候选者,因为它的功耗低于传统的阴极(例如空心阴极,微波炉放电阴极或射电频率放电阴极),并且不构成推动力。它也不涉及容易产生故障的部件,例如阀门和质量流控制器。电流密度
推荐引用推荐引用James,Winervil,“制造压力和NMC阴极组成对LPSCL电解质的影响,以改善固态电池性能”(2023年)。论文。罗切斯特技术学院。从
Bidhan Pandit,Bernard Fraisse,Lorenzo Stevano,Laure Monconduit,Moulay Tahar Sougrati。碳涂层的FEPO4纳米片作为Na-ion电池可固定的阴极:具有NA15PB4阳极的有前途的充分。Electrochimica Acta,2022,409,pp.139997。̄̄1016/j.lectacta.2022.139997̄。̄̄̄23562412