公式V a(v)∆ V(%)E H(MEV)S C(MAH/G)S E(WH/kg)分解LI 2 FESO 2.33 -4.5 0.0 227.3 N/a Li 2 Fe 4 S 3 O 2 2.72-7.2.72-7.3.3.3.3.3.3.3.3.3.3.3.3.3.3.gre ∗ 2.56 -5.3 3.3 248.6 637.8 li 2 feso + li 2 fe 4 s 3 o 2 + li 2 s li 2 s li 2 s li 2 fe 2 fe 2 o 2 2.56 -10.0 3.4 193.1 496.1 496.0 li 2 feo 2 feo 2 fe 4 s 3 s 3 o 2 s 3 o 2 li 2 li 2 s 2 2 Fe 4 S 3 O 2 + li 2 S Li 4 Fe 3 S 3 O 2 2.55 -4 18.1 248.6 633.6 Li 2 Feso + Li 2 Fe 4 S 3 O 2 + Li 2 S Li 2 S Li 4 O 2.47 -3.8 30.5 236.5 236.8 585.4 Li 2 Fe 2 Fe 4 2.58 -6.9 38.6 140.5 363.4 Li 2 Fe 4 S 3 O 2 + Fes + Fes + Li 2 S Li 2 S Li 4 Fe 2 S 3 O 2.09 -5.5 45.8 213.0 445.5 Li 2 Li 2 Fe 2 + Li 2 S Li 2 Fe 3 S 3 O 2.44 -7.6 48.8 182.6 446.5 Li 2 Fe 4 S 3 O 2 + Fes + Fes + Li 2 S Li 2 S Li 6 Fes 3 O 2.28
概念思想:1.) 确定 ℏ𝜔 的光电发射状态。2.) 计算每对状态的光电发射概率。3.) 计算本征发射率作为光电发射状态的加权平均值 4.) 对新的 ℏ𝜔 重复上述操作。
dz2 方向的键与 d xy 平面上的键结合,从而显著减轻 JT 畸变并抑制放电至 2.0 V 时的相变。按照这种策略,制备的尖晶石基正极实现了约 290 mA hg -1 的高可逆容量和高达 957 W h kg -1 的能量密度,并且循环稳定性得到改善。这项工作为传统尖晶石正极以低成本和可持续的方式应用于高能量密度 LIBs 找到了新的机会。关键词:锂离子电池;尖晶石基正极;局部结构连接;限制 Jahn-Teller 畸变;高能量密度。1. 简介为了应对电动汽车 (EV) 和电网储能系统 (PGESS) 对锂离子电池 (LIBs) 日益增长的需求,关键挑战之一是设计低成本、高能量密度的正极材料。 [1-3] 与现有的钴基和镍基层状正极材料(如 LiCoO 2 和 LiNi 1-xy Co x Mn y O 2(0 ≤ x+y ≤ 0.5))相比,锰基尖晶石氧化物 LiMn 2 O 4 因成本低、工作电压可接受而引起了广泛关注。[4-6] LiMn 2 O 4 已广泛应用于便携式移动电源,但由于能量密度低(<500 W h kg -1 ),未在电动汽车和 PGESS 中使用。用 Ni 部分替代 Mn,尖晶石 LiMn 2-x Ni x O 4(0< x <1)(LMNO)在接近 4.7 V 处表现出由 Ni 2+ /Ni 4+ 氧化还原对贡献的额外电位平台,将能量密度推高至 580 W h kg -1 。 [7-10] 尽管如此,由于只有尖晶石骨架上 8a 位上的锂离子可以可逆地嵌入/脱出,因此相对较低的容量(<140 mA hg -1 )可以进一步改善。 为了获得更高的容量,一种方法是将电位窗口从 3.0 - 4.8 V 扩展到 2.0 - 4.8 V,因为额外的锂离子可以在 3.0 V 以下嵌入 16c 位。 在此过程中,Mn 4+ 会还原到接近 Mn 3+ 的低价态,从而引起严重的 Jahn-Teller (JT) 畸变和从立方相到四方相(1T)的剧烈相变。 [11,12] 晶格对称性降低导致的晶格体积变化大和各向异性应变大,会在块体中引起裂纹,从而导致电接触丧失和结构降解,最终导致容量衰减。因此,通过抑制JT畸变来抑制立方-四方相变是提高3.0 V以下循环稳定性的关键。长期以来,尖晶石正极的研究主要集中在进一步提高结构稳定性,通过用Li、[6,13]Mg、[14,15]替代Mn或Ni
完整的作者列表:王,金阳;加利福尼亚大学伯克利分校,材料科学与工程; E O Lawrence Berkeley国家实验室,本恩;加利福尼亚大学伯克利分校,材料科学与工程Kim,Hyunchul;加利福尼亚大学伯克利分校,材料科学田,Yaosen;加利福尼亚大学伯克利分校,材料科学与工程;劳伦斯·伯克利国家实验室,材料科学Ceder,Gerbrand;加利福尼亚大学伯克利分校,材料科学与工程;劳伦斯·伯克利国家实验室,材料科学系金,海耶姆;劳伦斯·伯克利国家实验室,物质科学部
预插入已被广泛应用于其他分层材料(例如钒氧化物),以增强循环时的稳定性。选择充当结构稳定“支柱”的层间客人物种可以调整晶格间距,增强离子迁移率,通过与降低的V离子相关的浅供体水平赋予固有的电导率。38,44 - 48此外,水电池中存在层间水,筛选了嵌入离子和阴极之间的相互作用,从而导致更快的间隔过程。同样,也已经对紧密键合离子进行了前进的前进,以提高基于MN的阴极的性能。20预插离子的效应是每次切割离子和O和增强的结构稳定性之间的静电力。然而,这样的结论太模糊了,并忽略了前进前可能引起的结构转化,这使前插入的工作机理是未探索的区域。需要考虑和讨论结构 - 交换前阳离子和电化行为之间的性能关系。在这项工作中,分别通过SOL - 凝胶和热液方法制备了两种具有不同量K +的K + 2个伴侣。执行了详细的物理和电化学特征,以披露其在组成方面的差异和对电化学行为的影响。用K 0.28 MNO制造的Azibs 2- $ 0.1H 2 O(K 0.28 mo)在100 mA G 1下提供了相对较高的300 mA H G 1的特征。即使在高电流密度为2 A G 1的情况下,Azibs也表现出足够的特异性c c and 100 mA H G 1的能力,并在1000个周期内保持> 95%的容量,这是相关材料的最高水平。26,27相反,用K 0.21 MNO 2 $ 0.1H 2 O(K 0.21 mo)制造的Azib表现出较低的性能。通过系统的外部分析对能量存储机制进行了彻底研究。在整个循环过程中都观察到稳定的D -MNO 2原始相,以及Zn 4 So 4(OH)6 $ 5H 2 O(ZSH)相的可逆沉积/溶解,离子迁移和Mn Valence状态的同时变化。通过密度函数理论(DFT)模拟进一步划定了预介绍的K离子的潜在功能,
b' 对锂离子电池的技术需求快速增长,促使人们开发具有高能量密度、低成本和更高安全性的新型正极材料。高压尖晶石 LiNi 0.5 Mn 1.5 O 4 (LNMO) 是尚未商业化的最有前途的候选材料之一。这种材料的两个主要障碍是由于高工作电压导致的较差的电子电导率和全电池容量衰减快。通过系统地解决这些限制,我们成功开发出一种厚 LNMO 电极,面积容量负载高达 3 mAh \xe2\x8b\x85 cm 2 。优化的厚电极与纽扣电池和袋式电池级别的商用石墨阳极配对,在 300 次循环后,全电池容量保持率分别高达 72% 和 78%。我们将这种出色的循环稳定性归功于对电池组件和测试条件的精心优化,特别注重提高电子电导率和高压兼容性。这些结果表明,精确控制材料质量、电极结构和电解质优化很快就能支持基于厚 LNMO 阴极(> 4 mAh \xe2\x8b\x85 cm 2)的无钴电池系统的开发,这最终将满足下一代锂离子电池的需求,降低成本,提高安全性,并确保可持续性。'
“刚刚接受”的手稿已经过同行评审并被接受出版。它们在技术编辑、出版格式和作者校对之前在线发布。美国化学学会向研究界提供“刚刚接受”服务,以加快科学材料在被接受后尽快传播的速度。“刚刚接受”的手稿以 PDF 格式完整出现,并附有 HTML 摘要。“刚刚接受”的手稿已经过完全同行评审,但不应被视为记录的官方版本。它们可以通过数字对象标识符 (DOI®) 引用。“刚刚接受”是提供给作者的一项可选服务。因此,“刚刚接受”网站可能不包含将在期刊上发表的所有文章。手稿经过技术编辑和格式化后,将从“刚刚接受”网站上删除并作为 ASAP 文章发布。请注意,技术编辑可能会对手稿文本和/或图形进行细微更改,这可能会影响内容,并且适用于期刊的所有法律免责声明和道德准则均适用。 ACS 对因使用这些“刚刚接受”稿件中包含的信息而产生的错误或后果不负任何责任。
太阳能驱动水分解的持久性能和高效率是光电化学 (PEC) 电池尚未同时实现的巨大挑战。虽然由 III-V 族半导体制成的光伏电池可以实现很高的光电转换效率,但它们与电催化剂的功能集成以及工作寿命仍然是巨大的挑战。在此,超薄 TiN 层被用作埋层结 n + p-GaInP 2 光电阴极上的扩散屏障,使得随后的 Ni 5 P 4 催化剂生长为纳米岛时能够升高温度,而不会损坏 GaInP 2 结。所得 PEC 半电池的吸收损失可以忽略不计,饱和光电流密度和 H 2 释放量与用 PtRu 催化剂装饰的基准光电阴极相当。高耐腐蚀 Ni 5 P 4 /TiN 层在 120 小时内显示出不减损的光电阴极运行时间,超过了之前的基准。通过蚀刻去除电沉积铜(引入的污染物),恢复了全部性能,证明了操作耐用性。 TiN 层扩大了合成条件并防止腐蚀,使 III-V PEC 设备稳定运行,而 Ni 5 P 4 催化剂则取代了昂贵且稀缺的贵金属催化剂。
更广泛的背景 可充电电池仍然是便携式电子设备、混合动力电动汽车和电动汽车的限制组件,这促使人们开展研究以提高锂离子电池,特别是正极材料的能量密度、功率容量和安全性。此外,电能储存在应对全球变暖的全球战略中发挥着关键作用。对于电网储存应用,需要低成本、维护成本低且充放电循环寿命长的电池技术。在过去几年中,具有阳离子无序岩盐型结构的锂过渡金属氧化物已成为潜在的高能量密度正极。当制备过量的锂含量时,这些化合物可以成为合理的离子和电子导体,这一认识导致人们研究这种结构空间中的大量成分。目前,几种阳离子无序岩盐正极已经表现出非常高的比容量和高达 1000 W h kg 1 的能量密度,远远超过市售的层状锂过渡金属氧化物正极。阳离子无序的岩盐阴极也有望整合廉价且地球丰富的过渡金属物质,从而为大规模电力运输和电网存储应用提供更可持续的电池化学反应。
迫切需要高性能可充电电池来满足电网规模固定式储能的需求。高温电池系统,例如 Na-S 电池、Na-NiCl2 电池(ZEBRA 电池)和液态金属电极 (LME) 电池,表现出高功率密度和高循环稳定性等优点,但也受到高工作温度的影响。我们最近发明了熔融锂金属电池的新概念,它由液态锂阳极、合金(Sn、Bi、Pb)液态阴极和锂离子导体作为固体电解质组成。这里我们展示了一种在相对较低的 210 C 温度下工作的熔融金属氯化物电池。该电池设计包括熔融(AlCl3-LiCl)阴极、固体电解质(石榴石型 Li6.4La3Ta0.6Zr1.4O12(LLZTO)陶瓷管)和熔融锂阳极。组装的 AlCl3-LiCl||LLZTO||Li 全电池的平均放电电压为 1.55 V,能量效率为 83%,已成功循环 100 次(800 小时),容量没有衰减。电池的理论比能为 350 Wh/kg,根据电极材料的重量估计成本为 11.6 美元/千瓦时。考虑到高性能、高安全性、低工作温度和原材料成本低,我们的新型熔融电极电池系统为固定式储能开辟了新的机会。