锂离子电池因具有较高的能量密度和较长的循环寿命,被广泛应用于便携式电子设备、电动汽车和大型储能装置中。目前,商业化锂离子电池主要采用循环稳定性高的插层型锂储能材料作为正极和负极材料。然而,插层型正极材料如LiFePO 4 、LiMnO 4 、LiCoO 2 等理论容量低(< 200 mAh·g−1),不能满足日益增长的高能量密度需求。以非插层型锂储能材料为代表的锂硫(Li-S)电池具有很高的能量密度(2600 W·h·kg−1),是目前商业化锂离子电池的8倍以上[1,2],被认为是最有前途的高能量密度二次电池之一。硫及其完全锂化状态的 Li 2 S 均可用作 Li-S 电池的活性正极材料。硫基复合正极应与锂金属或含锂负极结合。低电子和离子电导率是元素硫的固有特性,
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
摘要:研究粘稠的甘醇二甲醚溶剂可能有助于寻找安全的电解液以促进锂硫 (Li-S) 电池的应用。因此,本文对使用不易燃的四乙二醇二甲醚添加低粘度 1,3-二氧戊环 (DOL) 的电解液进行了彻底研究,以实现可持续的 Li-S 电池。该电解质的特点是低可燃性、约 200°C 的热稳定性、25°C 时离子电导率超过 10 − 3 S cm − 1、Li + 迁移数约为 0.5、电化学稳定窗口从 0 至约 4.4 V vs Li + /Li,Li 剥离沉积过电位为 ∼ 0.02 V。DOL 含量从 5 wt % 逐渐增加到 15 wt % 会提高 Li + 运动的活化能,降低迁移数,稍微限制阳极稳定性,并降低 Li/电解质电阻。该电解质用于 Li − S 电池,其复合材料由硫和多壁碳纳米管以 90:10 的重量比混合而成,利用了优化的集流体。对阴极的结构、热行为和形貌进行了初步研究,并在使用标准电解质的电池中使用。该电池可进行超过 200 次循环,硫负载增加至 5.2 mg cm − 2,电解质/硫 (E/S) 比降低至 6 μ L mg − 1 。随后将上述硫阴极和基于甘醇二甲醚的电解质组合成安全的 Li − S 电池,其循环寿命和输出容量与研究浓度范围内的 DOL 含量相关。关键词:Li − S 电池、甘醇二甲醚电解质、低可燃性、MWCNT、集电器、E/S 比
近期电动汽车销量持续飙升,导致电动汽车电池材料供应链的循环性受到严格审查。创新的回收工艺或直接回收可以降低回收成本,是从报废 (EoL) 电动汽车电池中回收资源的一种可能解决方案。通过电化学方式将锂送回阴极或电化学再锂化是一种在直接回收过程中恢复 NMC 材料 (EoL) 锂含量的可能技术。这项研究为开发一种电化学再锂化方案提供了必要的理解,该方案将恢复通过锂库存损失 (LLI) 达到 EoL 的插层阴极材料的锂损失,而不是通过其他降解机制,如活性材料损失 (LAM)、阳离子混合或相变。已经制备并表征了电化学老化的 NMC 阴极材料,以确定 EoL 材料结构降解和锂损失的程度。使用基于模型的实验过程来确定最佳电化学再锂化方案,以最大限度地缩短再锂化 EoL 材料所需的时间并最大限度地提高锂的回收量。根据方案实现快速锂嵌入、保持 EoL 材料结构均匀性和完全恢复锂含量的能力对方案进行评估。利用新颖的扫描电压步骤,在高温下确定了最佳方案。
在新型储能器件中,水系锌离子电池(AZIBs)凭借低成本、高安全、绿色环保等显著优势成为当前的研究热点,但其正极材料的循环稳定性不尽如人意,给AZIBs的实际应用带来了很大的障碍。近年来,围绕AZIBs正极材料稳定性优化策略开展了大量系统而深入的研究。本文总结了正极材料循环稳定性衰减的因素以及通过空位、掺杂、目标修饰、组合工程等优化AZIBs正极材料稳定性的策略,并提出了相关优化策略的机理和适用的材料体系,最后提出了未来的研究方向。
钾离子电池 (PIB) 因其潜在的价格优势、丰富的钾资源以及钾的标准氧化还原电位低而作为大规模电能存储系统中锂离子电池 (LIB) 的有希望的替代品而受到越来越多的关注。然而,寻找具有所需特性(例如电压平台、高容量和长循环稳定性)的合适正极材料至关重要。最近,用于 PIB 的层状过渡金属氧化物因其高理论容量、合适的电压范围和环境友好性而显示出巨大的潜力。然而,由于 Jahn-Teller 效应引起的结构无序和不可逆相变的有害影响,K x MO 2 正极在 PIB 中的进展面临障碍。本综述简要介绍了 Jahn-Teller 效应的起源和机制,并提出了缓解这种现象的原则。特别地,总结了 PIB 用 K x MO 2 正极的现状,强调了 Jahn-Teller 效应带来的挑战。此外,提出了有希望的策略,例如成分调制、合成方法和表面改性,以减轻和抑制 Jahn-Teller 效应。这些策略为创新正极材料的前景提供了宝贵的见解,并为 PIB 领域的未来研究奠定了基础。
抽象响应紧迫的需求,以减轻由于化石燃料消耗而导致的气候变化影响,因此有一个集体推动向可再生和清洁能源过渡。但是,此举的有效性取决于超过当前锂离子电池技术的有效储能系统。与其他系统相比,具有明显高理论特异性容量的锂氧电池已成为有前途的解决方案。然而,在排出产品形成过程中,较差的阴极电极电导率和缓慢动力学的问题限制了其实际应用。在这项工作中,首先基于原理的密度函数理论用于研究β12-硼苯苯苯甲;作为高性能锂氧气电池的阴极电极材料的电催化特性。计算了β12-硼苯锂的吸附能,电荷密度分布,吉布斯自由能的变化以及超氧化锂(LIO 2)的扩散能屏障。我们的发现揭示了一些重要的见解:发现吸附能为-3.70 eV,这表明LIO 2在放电过程中保持固定在材料上的强烈趋势。LIO 2和β12-硼苯基底物之间的电荷密度分布中的动力学表现出复杂的行为。对吉布斯反应的自由能变化的分析产生的过电势为-1.87 V,该中等值表明在排放产物形成期间自发反应。最有趣的是,状态和频带结构分析的密度表明,在LIO 2吸附后,材料的电导率得到了保留,并提高了材料的电导率。此外,β12-硼苯二苯乙烯的扩散能屏障相对较低,为1.08 eV,这意味着LIO 2的毫不费力地扩散,并且放电过程的速率增加。最终,预测的β12-硼烷的电子特性使其成为有效锂氧气电池的阴极电极材料的强大候选者。
5宁博海洋学研究所,宁波315832,中国在这项工作中,作者提出了一种新型策略,以通过Nano-Graphene空心球从Prussian Blue Analogue CO(CO 3 [CO(CN)6] 2。使用低成本材料的单锅溶液方法设计用于通过不同温度和前体的HCl蚀刻步骤进行退火来合成阴极。这使该前体制造的Li -S电池感到惊讶,表现出了显着的电荷 - 均电稳定性(570.4 mA H G -1(以1C电流密度为1C)和出色的速率性能(1145.5,717.9,672.5 ma Hg -1 in 0.1,1.0,2.0 Ag -1.0,2.0 Ag -1 ag -1 ag -1 ag -1 restive dys crespenty d pertive of。结果表明,稳定的三维多层空心球结构减轻了硫的体积膨胀,这对多硫化物的吸附产生了重大影响,并抑制了“穿梭效应”。此外,在这种结构中,氮的丰富掺杂产生了许多缺陷和活性位点,从而改善了多硫化物的界面吸附。这是CO 3 [CO(CN)6] 2的富有想象力的应用,充当Li-S电池的阴极材料,该材料提供了一种独特的材料设计方法,可以实现用于Li-S电池的硫阴极的高性能。
摘要:燃料电池位于现代能源研究的最前沿,基于石墨烯的材料作为绩效的关键增强剂。此概述探讨了用于燃料电池应用的石墨烯基底盘材料的最新进步。石墨烯的较大表面积以及出色的电导率和机械强度使其非常适合在不同的固体氧化物燃料电池(SOFC)以及质子交换膜燃料电池(PEMFC)中使用。本评论涵盖了各种形式的石墨烯,包括氧化石墨烯(GO),氧化石墨烯还原(RGO)和掺杂的石墨烯,突出了它们的独特属性和催化贡献。它还研究了结构修饰,掺杂和功能组积分对基于石墨烯基极的电化学特性和耐用性的影响。此外,我们解决了高SOFC工作温度下石墨烯衍生物的热稳定性挑战,这表明潜在的解决方案和未来的研究方向。该分析强调了基于石墨烯的材料在推进燃料电池技术方面的变革潜力,旨在提高效率,具有成本效益和耐用的能源系统。
摘要:由于电动汽车和便携式电子设备的繁荣,高能存储设备的全球市场规模不断增加,导致电池工业生产了许多废物锂离子电池。阴极材料的解放和消除型是改善从支出的锂离子电池中得出的回收的必要程序,并启用了直接回收途径。在这项研究中,基于促进与粘合剂和二甲基亚氧化二甲基(DMSO)共溶性的相互作用,超临界(SC)CO 2具有创新的适应性以使用过的锂离子电池(LIB)回收。结果表明,解放阴极颗粒的最佳实验条件是在70℃的温度和80 bar压力下处理20分钟。在处理过程中,将聚乙烯氟(PVDF)溶解在SC流体系统中,并收集在二甲基亚氧化二甲基亚氧化二甲基(DMSO)中,如傅立叶变换红外光谱仪(FTIR)所检测到的。在最佳条件下,阴极的释放产量达到了96.7%,因此,阴极颗粒分散到较小的片段中。之后,可以将PVDF沉淀和重复使用。此外,在建议的过程中,由于粘合剂分解而没有氟化氢(HF)气体发射。建议的SCO-CO 2和共溶性系统有效地将PVDF与锂离子电池电极分开。因此,由于其效率,相对较低的能耗和环境良性特征,这种方法是一种替代性预处理方法。