在手动去角质期间使用的玻璃纸胶带,并帮助混合过程中施加的剪切力,以剥离效果。同时,纳米纤维素的表面亲水性羟基和(110)平面上存在的带电羧酸盐允许氢键键合到水中,并将其作为稳定的水分散体分散。尽管节奏CNF在帮助去角质和分散去角质的石墨烯方面具有有效性,但鉴于纤维素化学的多样性以及潜在的效果在促进石墨烯生产中,速度的高成本本身提高了替代纳米纤维素的需求。是硫酸化的纳米纤维素,它们既有阴离子,又有速度CNF,并且可以通过多种硫酸盐途径轻松产生。纤维素的硫酸化数十年来一直闻名,以产生水分性和由亲水性硫酸盐基团赋予的超级吸收性。14各种Cra纸浆,15,16棉,17和CNCS 18的水性硫酸盐和含钠的CNCS 18和Bisul bisul te产生了宏观大小的硫酸化纤维素,15,17 10-17 10 - 60 nm宽的CNF,16和200 nm diamemetion diamemety spheres or spheres或8 nm v。18冻干CNF 19
实验室位于生物产品和生物系统系内。生物产品和生物系统系 (Bio2) 是阿尔托大学化学工程学院的三个系之一,在利用自然资源开发先进材料的基础和应用研究方面享有国际领先声誉。它是欧洲领先的基于可再生资源利用的可持续化学和工程领域的研究和高等教育机构之一。Bio2 旨在为开发新颖的解决方案做出贡献,以实现可持续的初级生产和加工系统,从而可以生产出投入更少、对环境影响更小、温室气体排放更少的材料。在生物科学领域,该系开展生物过程技术、分子生物技术、酶技术、代谢工程、合成生物学、生物分子和生物混合材料的研究。该系的其他优势包括基于木质纤维素的可持续材料和产品,从纳米材料到新型纤维素基纺织品。
在这项研究中,确定了纤维素和硝酸纤维素样品的标准形成焓和熵。这些特征用于热力学分析整个纤维素样品和局部硝化的大量硝化,仅对纤维素的无定形结构域(AD)。发现,纤维素的大量硝化作用至1.5的替代程度(DS)是吸热性的,主要取决于温度 - 熵成分对负Gibbs电位的贡献。但是,如果DS高于1.5,则大量硝化变为放热,其可行性取决于焓对Gibbs电位的影响。在纤维素AD的局部硝化的情况下,对Gibbs电位的主要贡献是由反应焓决定了该过程的可行性。表明,随着硝酸纤维素ds的增强,反应的吉布斯电位的负值增加。因此,对较高DS的纤维素硝化在热力学上是有利的。由于局部硝化样品是无定形硝酸纤维素和结晶纤维素的共聚物,因此它们的亲水性应比纤维素明显小。因此,可以预期,局部硝化方法将为纤维素材料的廉价疏水方法找到广泛的实际应用。
水风信子(WH)是含水层的主要害虫,也是污染环境的香蕉皮废物的主要害虫。WH和香蕉皮有可能产生羧甲基纤维素(CMC)和果胶。CMC和果胶都适用于制造的水凝胶,这些水凝胶专注于天然成分,以用作食品包装材料。将CMC和果胶作为水凝胶材料的应用非常出色,可提高其机械,可生物降解和环境友好的特性。这项研究确定了柠檬酸作为交联剂对基于CMC-肽水凝胶的肿胀特性的影响,并研究了其官能团。通过提取WH纤维素开始杂交CMC-果胶水凝胶的制备。通过漂白和脱脂纤维素过程。纤维素通过两个步骤(碱化和羧甲基化)修改为CMC。在碱化阶段,将纤维素与NaOH 10%溶液混合。为羧甲基化,氯乙酸氮含量(Na-Ca)加入并在55°C下搅拌3.5小时。将水凝胶的制造与5%的比率70:30(w/w。%)的CMC:果胶:果胶。柠檬酸(CA)作为交联药,浓度为5%,10%和15%,用于热处理。混合生物混合凝胶(HBH)的结果是半透明的薄片膜,颜色是褐色。HBH CMC/果胶与以柠檬酸形式添加的交联剂(5%)的肿胀能力最高(6.64 wt。,在1小时内)。另外,通过傅立叶转化红外光谱法(FTIR)分析观察到羧基与羟基的存在。
锂离子电池摘要是大多数移动电子设备的重要组成部分。它基于它们的优势比其他电池具有巨大的认可。分离器对于锂离子电池(LIB)很重要。尽管分离器不涉及电化学过程,但它们在电池安全中起着重要作用。纳米纤维素材料是能源部门包括各种应用的潜在材料。这项研究探讨了纳米纤维素在锂离子电池中用作分离器的潜力。这项研究强调了该领域的研究,特别关注来自纳米纤维纤维素(CNF),纳米纤维纤维素(CNC)和纳米纤维素细菌(BC)等自然来源的不同纳米纤维素材料,以在锂离子电池中安装分离器。总的来说,这些评论对分离主义者与纳米纤维素的贡献更深入的看法对锂离子电池的安全性和性能。
锂离子电池摘要是大多数移动电子设备的重要组成部分。它基于它们的优势比其他电池具有巨大的认可。分离器对于锂离子电池(LIB)很重要。尽管分离器不涉及电化学过程,但它们在电池安全中起着重要作用。纳米纤维素材料是能源部门包括各种应用的潜在材料。这项研究探讨了纳米纤维素在锂离子电池中用作分离器的潜力。这项研究强调了该领域的研究,特别关注来自纳米纤维纤维素(CNF),纳米纤维纤维素(CNC)和纳米纤维素细菌(BC)等自然来源的不同纳米纤维素材料,以在锂离子电池中安装分离器。总的来说,这些评论对分离主义者与纳米纤维素的贡献更深入的看法对锂离子电池的安全性和性能。
de ci d ci de Maternals de Barcelonal(ICMAB-CSIC),UAB校园,Bellaterra,Bellaterra 08193,西班牙B alkek宏基因组学与微生物学研究中心,分子病毒学和分子病毒学和微生物学系 homico (CNAG), C/Baldiri Reixac 4, 08028 Barcelona, Spain D University Aut `ONOMA DE BARCELONA, Biophysics Unit, Department of Biochemistry and Molecular Biology, Faculty of Medicine, Avingua de Can Dom` Enech, 08193 Cerdanyola del Vall `Ex, Spain and Program in Development, Disease Models and Therapeutics, Baylor College of Medicine, 1贝勒广场,德克萨斯州休斯敦,美国德克萨斯州休斯敦,美国医学院,维克 - 中心加泰罗尼亚大学(UVIC-UCC)(UVIC-UCC),西班牙08500 VIC,西班牙G研究所,加泰罗尼亚中部的生命科学与健康研究所Aut'Onoma de Barcelona,08193,西班牙贝拉特拉,I Deprodoment debioquímicai生物学分子,大学Aut ot'Onoma'Onoma de Barcelona,08193 Bellaterra,西班牙de ci d ci de Maternals de Barcelonal(ICMAB-CSIC),UAB校园,Bellaterra,Bellaterra 08193,西班牙B alkek宏基因组学与微生物学研究中心,分子病毒学和分子病毒学和微生物学系 homico (CNAG), C/Baldiri Reixac 4, 08028 Barcelona, Spain D University Aut `ONOMA DE BARCELONA, Biophysics Unit, Department of Biochemistry and Molecular Biology, Faculty of Medicine, Avingua de Can Dom` Enech, 08193 Cerdanyola del Vall `Ex, Spain and Program in Development, Disease Models and Therapeutics, Baylor College of Medicine, 1贝勒广场,德克萨斯州休斯敦,美国德克萨斯州休斯敦,美国医学院,维克 - 中心加泰罗尼亚大学(UVIC-UCC)(UVIC-UCC),西班牙08500 VIC,西班牙G研究所,加泰罗尼亚中部的生命科学与健康研究所Aut'Onoma de Barcelona,08193,西班牙贝拉特拉,I Deprodoment debioquímicai生物学分子,大学Aut ot'Onoma'Onoma de Barcelona,08193 Bellaterra,西班牙
橙皮是一种可商购的天然纤维,由于其在植物中的纤维素浓度高,因此对在各种应用中使用它作为原材料的兴趣越来越多。这项研究旨在通过使用酸水解方法的化学处理方法来确定橙皮废物(OPW)中纳米纤维素的制备。为了提供OPW纳米纤维素的最佳条件,通过使用酸水解方法在其晶体结构中具有高结晶度,并研究了各种酸浓度对结晶度指数的影响,纤维素纳米晶体的结晶石大小和形态。然而,基于先前的研究,使用OPW有限的研究有限地报道了酸的类型和最佳酸浓度作为使用水解方法的参数。因此,在这项研究中,使用酸水解方法与最佳使用硫酸(H 2 SO 4)和盐酸(HCl),最佳酸浓度(30-40 wt%),恒定水解时间(120 min)和恒温(45°C)的最佳酸类型(H2 SO 4)和盐酸浓度(30-40 wt%)是全面的研究。基于所达到的结果,H 2 SO 4作为酸水解技术的最有利方法出现,有效地产生了精细分散的结晶纤维素,同时减轻了不良的聚集效应。最佳酸浓度为30 wt%,再加上120分钟的水解持续时间和45°C的温度,就结晶度指数和晶体大小而言,取得了最有利的结果,分别达到87.69%和3.19 nm的显着值。从OPW衍生的纳米纤维素作为一种具有环境可持续性的材料具有巨大的潜力,与设计和开发的全球趋势和谐相吻合,以增强可持续性。
文件名:b1.29_apjce-2021_go-carboxymethyl_cellulose_hydrogel_beads.pdf(5.96m)
1 南洋理工大学生物科学学院,新加坡 637551,新加坡 2 南阿拉巴马大学生物系,阿拉巴马州莫比尔 36688,美国 3 墨尔本大学生物科学学院,维多利亚州帕克维尔 3010,澳大利亚 4 波鸿鲁尔大学生物与生物技术学院,德国波鸿 44810 5 南洋理工大学新加坡环境生命科学工程中心,新加坡 637551,新加坡 6 南方科技大学医学院,深圳市南山区 518055,中国 7 哥本哈根大学植物与环境科学系(PLEN),丹麦 1871 Frederiksberg C 8 哥本哈根大学哥本哈根植物科学中心,丹麦 1871 Frederiksberg C 9 上海交通大学-南京大学杂交水稻国家重点实验室代谢与发育科学联合国际研究实验室上海交通大学生命科学与技术学院阿德莱德农业与健康联合中心, 上海 200240