在多输入多输出(MIMO)通信中,发射机和接收器之间多个通道的抽象表征和开发带来了经典通信系统的范式转移。围绕MIMO通信系统开发的技术不仅带来了前所未有的通信速率进步,而且还基本上提高了通过低错误率来衡量的通信的可靠性。我们开发了一个使用离散可变量子系统的MIMO量子通信的框架。我们提出了一个在多个通道之间结合噪声,损失和串扰的MIMO量子通道的通用模型。我们利用近似量子克隆在此通道设置上传输输入状态的不完美克隆。我们证明,与由于MIMO设置的多样性,传输多个不完美的克隆可以实现更好的沟通性能。我们还证明了实力和沟通速率之间的实际交易,并将其称为量子多样性多重交易(DMT),因为它与经典MIMO设置中众所周知的DMT相似。
完全去极化的量子通道始终输出完全混合态,因此无法传输任何信息。然而,在最近的一封信 [D. Ebler et al. , Phys. Rev. Lett. 120, 120502 (2018) ] 中,却表明如果量子态通过两个具有不同阶量子叠加的通道(这种装置称为“量子开关”),则信息仍然可以通过这些通道传输。在这里,我们表明,当人们相干地控制通过两个相同的去极化通道之一发送目标系统时,可以获得类似的效果。虽然人们很容易将量子开关中的这种效应归因于通道之间不确定的因果顺序,但因果不确定性在这种新场景中不起作用。这引发了人们对其在量子开关相应效应中的作用的质疑。我们详细研究了这一新场景,发现当量子信道被相干控制时,有关其具体实现的信息可以在联合控制目标系统的输出状态中访问。这允许区分通常被认为是同一信道的两种不同实现。更一般地,我们发现,要完整描述相干控制量子信道的作用,不仅需要指定信道的描述(例如,以 Kraus 算子的形式),还需要根据其实现指定一个额外的“变换矩阵”。
没有量子电路可以将完全未知的单元门变成其相干控制版本。然而,实验中已经实现了对未知门的相干控制,利用了不同类型的初始资源。在这里,我们将这些实验实现的任务形式化,将其扩展到任意噪声信道的控制,以及涉及更高维控制系统的更一般类型的控制。对于相干控制的标准概念,我们确定了用于控制 d 维系统上任意量子信道的信息论资源:具体而言,该资源是一个扩展的量子信道,充当 (d + 1) 维系统的 d 维扇区上的原始信道。使用此资源,可以用通用电路架构构建任意受控通道。然后,我们将标准的控制概念扩展为更一般的概念,包括对可能具有不同输入和输出系统的多个通道的控制。最后,我们开发了一个理论框架,称为路由通道上的超级映射,它提供了将相干控制作为在扩展通道上执行的操作的紧凑表示,并强调了该操作对不同部门的作用方式。
对人脑的电刺激已成为一种强大的治疗方式,从而改变了认知和行为的神经回路。最近的证据表明,刺激对生理和行为的影响取决于脑状态的内源性变异,如野外潜在记录所测量。在这里,我们描述了一个60频道的脑计算机界面 - 智能神经刺激系统(SNS),该界面结合了该场电位的频谱特征与多通道刺激功能结合的闭环分析。我们通过基准测试以及从行使设备功能子集的体内卵子研究演示了系统功能。我们的卵巢研究表明,SN可以可靠地测量行为的神经相关性(运动)和刺激的生理效应。我们在一项为期120天的刺激研究后通过组织学证明了刺激的安全性。
Omnichannel零售都集成了在线和OfflINE频道,以提供无缝的个性化客户体验。随着消费者的期望的发展,零售商正在采用策略来实现在所有接触点(包括在线,店内和移动设备)上的一致互动。这种方法影响销售,营销,库存管理和客户服务。与销售渠道单独运行的多渠道零售不同,Omnichannel确保了具有凝聚力的体验,使客户可以在渠道之间顺利过渡,并具有一致的服务,消息传递和品牌化。此策略可帮助零售商在快速变化的环境中保持竞争力。
通过赋予神经元活性的光控制,光遗传学和光学药理学是强大的方法,可用于探测疼痛信号的传播。但是,成本,动物处理和道德问题减少了他们的传播和常规使用。在这里,我们报告了Laki(光激活的K +通道抑制剂),这是一种与疼痛相关的两孔域钾跋涉和TRESK通道的特定照片开关抑制剂。在黑暗或环境光中,Laki不活跃。然而,在365 nm和480 nm处的经透明膜不可逆地阻止了伤害感受器中的徒步旅行/tresk电流,从而可以快速控制完整的疼痛和伤害感,并自由移动的小鼠和刺激性。这些结果表明,在体内,跋涉/TRESK在伤害感受器的自由神经末端的亚细胞定位,其中它们的急性抑制作用具有足够的能力引起疼痛,显示了Laki作为跋涉/TRESK通道研究的宝贵工具。更重要的是,Laki具有在幼稚的动物中无创和植物学方式可逆遥控的疼痛的能力,该动物在基本和转化性疼痛研究中具有实用性,但在体内镇痛药物筛查和验证中也没有遗传操纵或病毒感染。
我们研究量子信息和量子计算中出现的稳定器形式主义的数学、物理和计算方面。给出了泡利可观测量的测量过程及其算法。结果表明,要检测真正的纠缠,我们需要一整套稳定器生成器,并且稳定器见证比 GHZ(Greenberger-Horne-Zeilinger)见证更粗糙。我们讨论了稳定器代码,并从给定的线性代码构造了一个稳定器代码。我们还讨论了量子纠错、错误恢复标准和综合征提取。建立了稳定器形式的辛结构,并证明了任何稳定器代码都酉等价于一个平凡代码。通过获得相应的稳定器生成器,可以识别图代码作为稳定器代码的结构。获得了可嵌入稳定器代码在格中的距离。我们讨论了 Knill-Gottesman 定理、表表示和框架表示。利用稳定矩阵计算稳定门的模拟运行时间,并给出全局相位更新算法。给出了量子信道分解为稳定信道的过程。讨论了容量实现码,从而得到量子擦除信道的容量。最后,讨论了阴影层析成像问题,并给出了构造经典阴影的算法。
摘要 目的:心动过缓是由于心脏自律性受抑制、复极化延长或传导减慢所致。ERG 通道介导心脏动作电位中的复极化电流 I Kr,而 T 型钙通道 (TTCC) 参与哺乳动物的窦房起搏点和房室传导。斑马鱼已成为人类心脏电生理学和疾病的宝贵研究模型。在这里,我们研究了 ERG 通道和 TTCC 对斑马鱼幼虫起搏点和房室传导的贡献,并确定了引起房室传导阻滞的机制。方法:在心脏中表达比率荧光 Ca 2 + 生物传感器的斑马鱼幼虫用于测量体内跳动心脏的 Ca 2 + 水平和节律,同时测量收缩和血流动力学。房室延迟(心房和心室 Ca 2 +瞬变开始之间的时间)用于测量脉冲传导速度,并区分慢传导
模拟细胞微环境对于类器官和器官芯片研究非常重要。当前的课题之一是将类似血管的结构引入培养系统以改善细胞和组织功能,这值得在设计和系统考虑方面付出特别的努力。基于标准的设备配置,我们制作了一个类似血管的组件,可以轻松集成以进行细胞共培养。该组件由位于开放通道顶部的嵌入单层明胶纳米纤维组成。然后可以用带有模制腔、通道和标准 Luer 连接器的上部塑料板将其封闭。首先将人脐静脉内皮细胞 (HUVEC) 引入类似血管的通道中,并借助旋转装置进行三维培养。然后,施加流动进行细胞骨架重塑,得到致密且排列整齐的 HUVEC 层。随后,将人类胶质母细胞瘤细胞(U87)引入纤维层的上部,并施加流动以进行上部细胞层培养。我们的结果表明,在单层明胶纳米纤维的两侧均形成了 HUVEC 和 U87 细胞层,从而为各种共培养试验提供了可靠的支持。
几十年来,人们对 SOI 器件进行了广泛的研究,并将其应用于多种应用:具有厚硅膜(>60nm)的部分耗尽 SOI 器件用于 RF-SOI 应用 [1],而具有薄 SOI 膜(<10nm)的全耗尽 SOI 器件用于 RF、数字和更多 Moore 应用 [2-4]。已知 PD-SOI 器件中会发生浮体 (FB) 效应 [5-6],可以通过体接触消除 [7-8],而 FD-SOI 器件由于具有薄 SOI 膜,因此不受 FB 效应的影响。最近,已经提出了在薄 BOX 上具有相对较薄的薄膜(22nm)的 SOI 器件,以满足 3D 顺序积分的成像器应用要求 [9],其中 SOI 膜掺杂可用于 Vt 居中。本文的目的是确定这种 SOI 器件的操作,并提出相应的 TCAD 描述,考虑 SOI 膜掺杂。