摘要:基于密度功能理论(DFT)和波函数分析,紫外和可见的分光光度计(UV-VIS)光谱和1-Meso的Raman光谱以及通过手性纳米矩阵的手性分离获得的1-Meso和1-RAC。通过过渡密度矩阵(TDM)和电荷密度差(CDD)图研究了1-MESO和1-RAC的电子激发特性。基于基于赫希菲尔德分区(IGMH)的非独立梯度模型,讨论了分子间相互作用。使用静电电势(ESP)研究了1-MESO和1-RAC与外部环境的相互作用,并根据外部磁场下的磁诱导电流研究了1-MESO和1-RAC的电子定位度。通过1-RAC的手性分离,两个对映异构体,1-(p,p)和1-(m,m)。通过分析1-Meso,1-Meso,1-(P,P)和1-(P)和1-(M,M),过渡电动偶极矩(TEDM)和过渡磁性二极管矩(TMDM)的电子圆二色(ECD)光谱来揭示分子的电磁相互作用。发现,由于结构的反转,1-(p,p)和1-(m,m)具有相反的手性特性。
完整作者列表: Maruyama, Jun;大阪工业技术研究所,环境技术研究部 Maruyama, Shohei;大阪工业技术研究所, Kashiwagi, Yukiyasu;大阪市立技术研究所, Watanabe, Mitsuru;大阪工业技术研究所,电子材料研究部 Shinagawa, Tsutomu;大阪工业技术研究所,电子材料研究部 Nagaoka, Toru;大阪工业技术研究所,材料科学与工程研究部 Tamai, Toshiyuki;大阪工业技术研究所,森之宫中心 Ryu, Naoya;熊本工业研究所,材料开发部 Matsuo, Koichi;广岛大学 Ohwada, Mao;东北大学,先进材料多学科研究中心 Chida, Koki;东北大学, Yoshii, Takeharu;东北大学,先进材料多学科研究中心 Nishihara, Hirotomo;东北大学先进材料多学科研究中心 Tani, Fumito;九州大学材料化学与工程研究所 Uyama, Hiroshi;大阪大学,
可控的方式。[6] 然而,自上而下的技术不可扩展,且大多数技术耗时耗力,从而阻碍了它们的潜在应用。特别是手性微结构可以通过调制飞秒激光焦点的单次曝光快速制造。[7] 其几何形状严格由可实现的结构化焦点决定,并且得到的表面质量相当差。相反,自下而上的方法提供了一种经济高效且可扩展的替代方法,通过由不同材料(如共聚物、[8] 肽、[9] 纳米粒子 [10] 和 DNA 四面体 [11] 制成的亚基的顺序自组装来创建分层纳米结构。不幸的是,由于自发自组装过程的固有特点,对几何形状、空间排列、规律性和螺旋性的精确控制非常困难。自上而下和自下而上相结合的混合制造技术的最新进展有望克服上述一些限制。[12] 特别是,通过介导弹性毛细管相互作用的毛细管力驱动自组装引起了人们的极大兴趣,因为它具有简单性和可扩展性的独特优势,[13] 并且在一定程度上已用于混合制造策略。基于光刻的技术已经实现中尺度刷毛的制造,并且通过利用弹性毛细管聚结已经得到高度有序的螺旋簇。[14] 然而,由于圆形原纤维具有旋转对称性,因此单个簇所实现的手性是随机的。虽然可以通过将横截面渲染为矩形来获得特定的手性重排,但手性的可调性仍然有限。利用电子束光刻技术实现10纳米级的纳米柱,然后通过毛细管力诱导的纳米内聚力进行自组装。[15] 利用多光束干涉光刻技术,结合溶液蒸发过程中的毛细管力,制备并组装大面积图案化微柱。[16] 我们之前的研究表明,可以利用毛细管力来驱动直柱生成具有高度可控性的分级微结构。[17] 然而,由于毛细管力在微尺度上很难利用,它们都无法实现可控的手性结构。因此,开发一种简便、可控、高效的功能手性结构制备方法是十分有必要的。
Chiral kagome superconductivity modulations with residual Fermi arcs in KV 3 Sb 5 and CsV 3 Sb 5 Authors: Hanbin Deng 1 *, Hailang Qin 2 *, Guowei Liu 1 *, Tianyu Yang 1 *, Ruiqing Fu 3 *, Zhongyi Zhang 4 , Xianxin Wu 3 †, Zhiwei Wang 5,6 †,Youguo Shi 7,8,9†,Jinjin Liu 5,6,Hongxiong Liu 7,8,Xiao-Yu Yan 1,Wei 1,Wei 1,Xitong Xu 10,Yuanyuan Zhao 2,Yuanyuan Zhao 2,Mingsheng Yi 11,Gang Yi 11,Gang Xu 11,Gang Xu 11,Hendrik Hohmann 12,Hendrik Hohmann 12,hendrik Hohmann 12,sofie castro castro castrun decto and dectoholbükk。 Sen Zhou 3,Guoqing Chang 15,Yugui Yao 5,6,Qianghua Wang 16,Zurab Guguchia 17,Titus Neupert 13,Ronny Thomale 12,Mark H. Fischer 13,Jia-Xin Yin Yin 1,2†物理学:1个物理学:1个科学和科学技术系,Shengong,Shengong。2广东港量子科学中心大湾大湾地区(广东),中国深圳。 3理论物理学理论物理学研究所的CAS关键实验室,中国科学院,北京100190,中国。 4香港科学技术大学物理系,中国香港清水湾。2广东港量子科学中心大湾大湾地区(广东),中国深圳。3理论物理学理论物理学研究所的CAS关键实验室,中国科学院,北京100190,中国。4香港科学技术大学物理系,中国香港清水湾。4香港科学技术大学物理系,中国香港清水湾。
我们基于手性铁电列相(n f ∗)提出了液晶激光器装置。激光培养基是通过将铁电列材料与手性剂和一小部分荧光染料混合而获得的。值得注意的是,在N f ∗相中,非常低的电场垂直于螺旋轴能够重新定位分子,从而产生了一个周期性结构,其导演不是单个谐波,但包含各种傅立叶成分的贡献。此功能诱导了几个光子带盖的外观,这些光子带镜的光谱范围取决于磁场,可以利用该磁场来构建可调激光设备。在这里,我们报告了可以在低电场下进行调谐的自制n f ∗激光器的表征,并在材料的两个光子带中呈现激光作用。获得的结果为设计新的和更通用的液晶激光器设计开辟了有希望的途径。
手性2D钙钛矿作为圆形极化的光致发光材料引起了极大的关注,但是这些材料通常在环境条件下表现出较弱的CPL。几项研究表明,使用强的外部磁场或低温可以增强CPL的程度。在这里,我们报告了一种通过使用极高的高压来调整手性2D钙钛矿的圆两极化的光致发光的方法。(S-和R-MBA)2 PBI 4钙钛矿表现出良好的光学可调性,其压力在PL波长,强度和带隙方面。极化分辨的光致发光测量表明,在环境压力下,CPL的程度从近乎零增加到8.5 GPA时高达10%。adxrd和拉曼结果表明,在施加压力时,结构失真和增加的层间耦合是造成增强性手性的。我们的发现提供了一种调整CPL材料并显示下一代CPL设备中潜在应用的新方法。
我们基于手性铁电列相(n f ∗)提出了液晶激光器装置。激光培养基是通过将铁电列材料与手性剂和一小部分荧光染料混合而获得的。值得注意的是,在N f ∗相中,非常低的电场垂直于螺旋轴能够重新定位分子,从而产生了一个周期性结构,其导演不是单个谐波,但包含各种傅立叶成分的贡献。此功能诱导了几个光子带盖的外观,这些光子带镜的光谱范围取决于磁场,可以利用该磁场来构建可调激光设备。在这里,我们报告了可以在低电场下进行调谐的自制n f ∗激光器的表征,并在材料的两个光子带中呈现激光作用。获得的结果为设计新的和更通用的液晶激光器设计开辟了有希望的途径。
光子纳米结构与量子发射器之间的手性光 - 脱子相互作用显示出实现量子信息处理的自旋 - 光子界面的巨大潜力。量子发射极的位置依赖性自旋动量锁定对于这些手性耦合纳米结构很重要。在这里,我们报告了量子点(QD)和跨波导之间的位置依赖性手性耦合。选择在横截面中不同位置分布的四个量子点以表征设备的手性特性。定向发射是在单个波导和两个波导中同时实现的。此外,可以用四个输出的手性对比确定QD位置。因此,通过将QD放置在合理位置,跨波导可以充当单向单向波导和圆形极化的光束分离器,该位置具有潜在的应用程序,该QD在单个光子水平上的复杂量子光学网络中具有潜在的应用程序。
碳基纳米结构可以根据其精确的键合结构显示出异常多样的特性。这包括石墨烯纳米带 (GNR),1-3 其中石墨烯晶格被限制为狭窄的一维条纹。具有扶手椅取向边缘的 GNR 显示出半导体带结构。相比之下,锯齿形甚至手性 GNR 是准金属的,并且会形成自旋极化边缘态,2-5 除非它们非常窄。在这种情况下,两侧的边缘态相互杂化,这会猝灭自旋极化并赋予带常规的半导体带结构。6,7 对于具有 (3,1) 手性矢量的带,维持准金属行为所需的最小宽度包括从一侧到另一侧的六条碳锯齿线。6 这一理论预测最近已通过合成和光谱表征 Au(111) 上不同宽度的 (3,1) 手性 GNR 得到实验证实。 8 然而,这些纳米带,就像纯锯齿状边缘的 GNR 9 或具有与周期性锯齿状边缘段相关的低能态的其他 GNR 10–12 一样,迄今为止仅在 Au(111) 上合成和表征。为了研究具有较低功函数的不同基底对纳米带电子特性的影响,我们在弯曲的 Ag 晶体 13 上合成了六条锯齿状线宽的 (3,1) 手性 GNR((3,1,6)-chGNR,图 1a),该晶体相对于中心 (111) 表面取向向两侧跨越高达 ±15 度的邻位角(图 1b)。整个晶体的合成都是成功的,但样品每一侧的不同类型的台阶对纳米带的优选方位角排列有不同的影响。这为我们提供了一个理想的样品,可通过角分辨光电子发射 (ARPES) 研究沿纳米带纵轴和垂直于纳米带纵轴的能带色散。我们使用的反应物是 2',6'-二溴-9,9':10',9”-四蒽 (DBTA,图 1a),合成方法见补充信息。8 它经过