摘要:循环肿瘤DNA(ctDNA)是一种常规的液体活检样本,可通过采集来动态监测疾病状态。然而,其潜在的临床价值以及与腹水样本或肿瘤活检的一致性对于卵巢癌患者还有待进一步评估。因此,本研究比较了ctDNA、配对肿瘤组织和腹水样本之间的突变谱,以探讨它们在卵巢癌中的可能临床价值。使用靶向下一代测序筛查卵巢癌患者18个外周血样本、6个配对腹水样本和8个配对肿瘤组织中的突变。使用公共数据库进行功能分析。使用WebGestalt进行基因本体论和通路富集分析。使用cBioPortal for Cancer Genomics评估治疗靶点。使用Chilibot和检索相互作用基因/蛋白质的搜索工具来获取关键基因及其功能相互作用。使用维恩图对三类样本进行比较分析。在ctDNA样本中共发现104个癌症相关突变基因,在肿瘤组织中共发现95个基因,在腹水样本中共发现44个基因。通过Chilibot分析获得了一个涵盖10个基因的簇,即NOTCH2、NOTCH3、赖氨酸甲基转移酶2A、PTEN、雄激素受体、DNA活化蛋白激酶催化亚基、肝细胞核因子1同源框A、SRC、胰岛素受体底物2和SRY盒转录因子10。该基因组可能具有监测卵巢癌转移和确定治疗靶点的潜力
DNA 损伤和基因组不稳定性是非小细胞肺癌 (NSCLC) 病因和进展的因素。然而,它们的治疗开发令人失望。CTC 衍生外植体 (CDX) 为 CTC 转移能力的机制研究提供了系统,并可能为生物驱动疗法提供理论基础。从 NSCLC CTC 建立了四种 CDX 模型和 3 种 CDX 衍生细胞系,并重现了患者肿瘤组织学和对铂类化疗的反应。CDX (GR-CDXL1、GR-CDXL2、GR-CDXL3、GR-CDXL4) 与患者肿瘤活检和/或单个 CTC 显示出相当大的突变景观相似性。关键 DNA 损伤反应 (DDR) 和基因组完整性相关基因的躯干改变在各个模型中普遍存在,并被评估为体外、卵内和体内的治疗靶点。 GR-CDXL1 表现出与双等位基因 BRCA2 突变和 FANCA 缺失相关的同源重组缺陷、有丝分裂后未修复的 DNA 损伤以及对奥拉帕尼的敏感性(尽管对化疗有抵抗力)。GR-CDXL4 中的 SLFN11 过表达导致对奥拉帕尼的敏感性,并且与患者肿瘤活检中的神经内分泌标志物表达一致,表明 SLFN11 在 NSCLC 组织学转化为小细胞肺癌 (SCLC) 方面具有预测价值。着丝粒聚集促进了 GR-CDXL3 细胞中可靶向的染色体不稳定性。这些 CDX 揭示了 DDR 和基因组完整性相关缺陷是 CTC 转移潜能的核心机制,并为其在转移性 NSCLC 中的治疗靶向提供了理论依据。
摘要浆细胞样树突状细胞 (pDC) 是一种具有多方面功能的稀有免疫细胞,但由于可从血液中提取的细胞数量稀少,它们作为细胞免疫疗法的潜在用途受到挑战。在这里,我们系统地研究了从造血干细胞和祖细胞 (HSPC) 生成 pDC 的培养参数。使用优化条件结合 HSPC 预扩增的实施,我们从 100,000 个脐带血衍生的 HSPC 开始生成平均 4.65 亿个 HSPC 衍生的 pDC (HSPC-pDC)。此外,我们证明这种方案允许从全血 HSPC 生成 HSPC-pDC,并且这些细胞显示出 pDC 表型和功能。使用符合 GMP 的培养基,我们观察到 TLR7/9 反应显著丧失,通过补充抗坏血酸可以挽救这种丧失。抗坏血酸诱导与 pDC 特异性先天免疫途径相关的转录特征,表明抗坏血酸对 pDC 功能具有未知作用。这构成了从全血中生成 pDC 的第一个方案,并为研究 HSPC-pDC 的细胞免疫疗法奠定了基础。
摘要背景患有单心室 (SV) 心脏病的儿童和青少年经常会患上难治性心力衰竭 (HF)。我们对这背后的分子和生化原因的理解并不完善。因此,迫切需要能够预测结果并为治疗提供合理依据并增进我们对 HF 基础的理解的生物标志物。目的我们试图确定代谢组学方法是否能提供 SV 儿童和青少年 HF 的生化特征。如果有意义,这些分析物可作为预测结果和告知 HF 生物学机制的生物标志物。方法我们应用了一种多平台代谢组学方法,由质谱 (MS) 和核磁共振 (NMR) 组成,分别得到了 495 个和 26 个代谢物测量值。血浆样本来自一组年龄在 2-19 岁之间的年轻 SV 受试者的横断面,其中 10 个对照 (Con) 受试者和 16 个 SV 受试者。在 SV 受试者中,九人被诊断为充血性 HF (SVHF),七人未患 HF。代谢组学数据与临床状态相关联,以确定是否存在与 HF 相关的特征。结果 3 个队列的年龄、身高、体重或性别没有差异。然而,使用 ANOVA 对代谢组学谱进行统计分析显示,44 种代谢物在各队列之间存在显著差异,其中 41 种通过 MS 分析,3 种通过 NMR 分析。这些代谢物包括酰基肉碱、氨基酸和胆汁酸,这将 Con 与所有 SV 受试者区分开来。此外,代谢物谱可以区分 SV 和 SVHF 受试者。结论这些是首次显示与 SV 儿童和年轻人 HF 相关的明确代谢组学特征的数据。有必要进行更大规模的研究以确定这些发现是否可以预测及时进展为 HF 以提供干预。
摘要组织肿瘤突变负担(TTMB)的计算以有助于癌症治疗选择。高TTMB预测非小细胞肺癌患者对免疫疗法的有利反应。 据报道,来自循环肿瘤DNA的血液TMB(BTMB)具有相似的预测能力,并已被提议作为TTMB的替代方案。 在许多研究中,不仅TTMB和BTMB并不一致,而且正如我们小组先前报道的那样,预测结果相互矛盾。 这意味着BTMB不是TTMB的替代品,而是可能包含肿瘤异质性的复合指数。 在这里,我们提供了TMB的预测能力的详细概述,讨论与TMB一起使用肿瘤异质性来预测治疗反应的使用,并回顾了几种肿瘤异质性评估的方法。 此外,我们提出了一种假设方法来估计肿瘤异质性并触及其临床意义。高TTMB预测非小细胞肺癌患者对免疫疗法的有利反应。据报道,来自循环肿瘤DNA的血液TMB(BTMB)具有相似的预测能力,并已被提议作为TTMB的替代方案。在许多研究中,不仅TTMB和BTMB并不一致,而且正如我们小组先前报道的那样,预测结果相互矛盾。这意味着BTMB不是TTMB的替代品,而是可能包含肿瘤异质性的复合指数。在这里,我们提供了TMB的预测能力的详细概述,讨论与TMB一起使用肿瘤异质性来预测治疗反应的使用,并回顾了几种肿瘤异质性评估的方法。此外,我们提出了一种假设方法来估计肿瘤异质性并触及其临床意义。
1. 澳大利亚麦考瑞大学纳米生物光子学 ARC 卓越中心,悉尼,新南威尔士州 2109,澳大利亚 2. 莫斯科谢切诺夫第一国立医科大学分子医学研究所,莫斯科,119991,俄罗斯 3. 谢切诺夫大学泌尿外科和生殖健康研究所,莫斯科,119991,俄罗斯 4. 普里伏尔加斯基研究医科大学,下诺夫哥罗德,米尼尼波扎尔斯基广场,10/1,603005,俄罗斯 5. 下诺夫哥罗德罗巴切夫斯基国立大学,下诺夫哥罗德,加加林娜大道 23,603950,俄罗斯 6. 悉尼科技大学生物医学工程学院,悉尼,2007,澳大利亚 7. 昆士兰科技大学,基因组学和个性化健康中心,生物医学科学学院,健康学院,昆士兰州,伍伦加巴,4102,澳大利亚 8. 转化研究研究所,Woolloongabba,QLD 4102 澳大利亚 9. 广州生物医药与健康研究院,广州,中国 10. 伏尔加科学研究大学癌症、放射治疗和放射诊断系,下诺夫哥罗德,俄罗斯 603005 11. 俄罗斯科学院生物有机化学研究所 IBCh – Shemyakin Ovchinnikov,Miklukho Maklai 街 16 号,莫斯科,俄罗斯
方法:一项单中心、前瞻性、生物标志物驱动的研究。符合条件的患者包括那些被诊断为肝转移性结肠直肠癌并计划接受一线奥沙利铂加 5-氟尿嘧啶或卡培他滨治疗的患者。患者接受配对血液采样和磁共振成像 (MRI) 检查,生物标志物与无进展生存期 (PFS) 和总生存期 (OS) 相关。结果:20 名患者被招募参与研究。数据显示,从治疗前到第 2 周期第 2 天,化疗显著降低了循环肿瘤细胞的数量以及 Ang1、Ang2、VEGF-A、VEGF-C 和 VEGF-D 的循环浓度。循环浓度的变化与 PFS 或 OS 无关。平均而言,从治疗前到第 2 周期第 2 天,MRI 灌注/通透性参数 K trans 在细胞毒性化疗后有所增加,并且这种增加与更差的 OS 相关(HR 1.099,95%CI 1.01 – 1.20,p = 0.025)。
细胞在循环肿瘤细胞(CTC)内(CTC)中的细胞异质性已被广泛描述,肿瘤患者的血液监测研究表明,CTC能够在免疫缺陷小鼠中异种植入后能够生存化疗并产生转移酶[1]。因此,至少从理论上讲,在整个血液中传播的肿瘤细胞中抗药性CTC的鉴定将在CTC和癌症干细胞(CSC)上提供一个统一的假设。然而,循环肿瘤细胞与癌症干细胞之间的关系很复杂,目前正在争论,并且很难达到特定标记的目的[2]。CD44V6,主要参与癌细胞迁移和侵袭的CD44同工型已被确定为结直肠癌(CRC)组织中干性和治疗靶标的功能性生物标志物[3]。CD44V6在所有结直肠癌干细胞中都有报道,并且它们的迁移和产生转移性肿瘤是必需的[4]。这个概念得到了实验小鼠模型的支持,这表明肿瘤活性局限于CD44V6种群中[3]。
作为转移过程的关键调节器,血小板是递送新型癌症治疗剂的潜在靶点和有效载体。人们已经对各种抗血栓药物在减少癌症患者血栓事件和转移负担方面的功效进行了研究。临床研究表明,抗凝剂对治疗局部疾病患者比治疗全身疾病患者更有益处。13,14 然而,由于过度出血,长期使用抗凝剂作为癌症治疗会带来更高的风险。从那时起,人们就开始努力开发以血小板或凝血途径调节剂为靶点的抗癌疗法,而不会影响止血。最近的研究表明,基于人工“血小板样”颗粒的创造,可以向 CTC 递送癌症治疗剂。多项研究已成功将细胞毒性药物(如阿霉素)包装在人类血小板膜或血小板模拟纳米颗粒中。这些血小板样颗粒可减轻体内小鼠模型中的转移负担。15 – 17 此外,最近的研究表明,用细胞毒性药物功能化血小板膜比将细胞毒性药物装入血小板更能有效地杀死 CTC 并减少癌症转移。18 – 20
1 Cell and Molecular Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America, 2 Genomics and Computational Biology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America, 3 Boston VA Healthcare System, Boston,美国,美国,马萨诸塞州,4个基因组医学中心,马萨诸塞州综合医院,哈佛医学院,波士顿,马萨诸塞州,美国,美国,美国,医学和人口遗传学的5计划宾夕法尼亚大学佩雷曼医学院,宾夕法尼亚州宾夕法尼亚大学,美国,美国,宾夕法尼亚大学佩雷曼医学院8号医学系8号医学院美国加利福尼亚州斯坦福大学,美国遗传学系11,宾夕法尼亚州宾夕法尼亚大学佩雷曼医学院,美国宾夕法尼亚州,美国,美国宾夕法尼亚州12号,宾夕法尼亚州宾夕法尼亚州,宾夕法尼亚州宾夕法尼亚州,宾夕法尼亚州佩雷尔曼大学医学,佩雷尔曼学院,宾夕法尼亚州,宾夕法尼亚州,宾夕法尼亚州,宾夕法尼亚州,宾夕法尼亚州,宾夕法尼亚州,宾夕法尼亚州,宾夕法尼亚州,宾夕法尼亚州,宾夕法尼亚州per transliatiational and Frransiatiational and phillvaania,13宾夕法尼亚州宾夕法尼亚大学宾夕法尼亚州宾夕法尼亚州佩雷尔曼医学院治疗学院治疗学