摘要:本研究的目的是在钛 (Ti) 植入物表面形成功能层,以增强其生物活性。使用经济高效的浸涂法,在碱处理的 Ti 表面上沉积了含有羟基磷灰石 (HAp) 纳米颗粒 (NPs) 和镁 (Mg) 颗粒的聚氨酯 (PU) 层。从形态、化学成分、粘附强度、界面结合和热性能等方面评估涂层。此外,使用 MC3T3-E1 成骨细胞样细胞研究了细胞对不同涂层 Ti 基材的反应,包括通过碱性磷酸酶 (ALP) 测定评估细胞粘附、细胞增殖和成骨活性。结果表明,HAp NPs 的加入增强了涂层和碱处理的 Ti 表面之间的界面结合。此外,Mg 和 HAp 颗粒的存在增强了表面电荷特性以及细胞附着、增殖和分化。我们的结果表明,在钛植入物上沉积含有 Mg 和 HAp 颗粒的生物活性复合层可能会诱导骨形成。
近年来,乳腺癌已成为女性癌症死亡的首要原因(1)。乳腺癌的早期诊断和有效治疗是降低死亡率的关键。但传统的乳腺癌诊断方法往往依赖于组织活检,受限于取样误差和侵袭性,且缺乏有效的诊断方法检测乳腺癌转移性病变。此外,乳腺癌化疗的全身副作用对有基础疾病患者的生存构成挑战。为了改善这一问题,近年来,纳米粒子药物递送系统被广泛研究,用于靶向递送分子探针/治疗药物,实现乳腺癌的早期精准诊断和治疗。然而,纳米粒子的靶向性不足及存在肿瘤免疫抑制等问题,导致治疗效果降低和肿瘤复发(2,3)。近年来,有学者在乳腺癌模型治疗中发现,经过癌细胞膜修饰的纳米粒子比未修饰的纳米粒子具有更好的免疫逃逸能力、通透性和靶向性,使治疗/诊断药物更容易在靶向位置聚集,这为乳腺癌治疗提供了新的思路和方法。
本研究由美国能源部硅谷联盟项目下的车辆技术办公室资助,由 Brian Cunningham 指导,Anthony Burrell 管理。本研究部分由可持续能源联盟有限责任公司 (Alliance for Sustainable Energy, LLC) 开展,该公司是美国能源部 (DOE) 国家可再生能源实验室的管理者和运营商,合同编号为 DE-AC36-08GO28308。本文表达的观点不一定代表美国能源部或美国政府的观点。美国政府保留;出版商接受本文发表即承认美国政府保留非独占、已付费、不可撤销的全球许可,可出于美国政府目的出版或复制本作品的已出版形式,或允许他人这样做。
摘要:智能纺织品因其在简化生活方面的潜在应用而引起了广泛关注。最近,通过将电子元件整合到导电金属纱线上/内来生产智能纺织品。表面贴装电子设备 (SMD) 集成电子纱线的开发、特性和机电测试仍然有限。由于非细丝导电纱线具有突出的纤维,因此容易发生短路。确定最佳构造方法并研究影响基纱纺织性能的因素非常重要。本文研究了不同外部因素(即应变、焊盘尺寸、温度、磨损和洗涤)对 SMD 集成镀银 Vectran (SCV) 纱线电阻的影响。为此,通过应用气相回流焊接方法将 SMD 电阻器集成到 SCV 纱线中来制造 Vectran 电子纱线。结果表明,导电线规长度、应变、重叠焊盘尺寸、温度、磨损和洗涤对 SCV 电子纱的电阻性能有显著影响。此外,根据实验,由 SCV 导电线和 68 Ω SMD 电阻制成的电子纱的最大电阻和功率为每 0.31 m 长度 72.16 Ω 和 0.29 W。因此,这种电子纱的结构也有望为制造可穿戴导电轨道和传感器带来巨大好处。
由于许多疾病与局部炎症增加有关,因此将药物引导到发炎部位可能是一种有力的治疗策略。发炎的内皮细胞的常见特征之一是调节血管细胞粘附分子– 1(VCAM-1)。在这里,利用非常晚期的抗原– 4(VLA-4)(VLA-4)和VCAM-1之间的特定亲和力产生能够靶向发炎的仿生纳米颗粒制剂。从遗传改性到组成型表达VLA-4的细胞的质膜被涂在聚合物纳米粒子核上,所得的细胞膜涂层纳米颗粒表现出对对靶细胞的亲和力增强,该靶细胞过度表达VCAM-1的体外VCAM-1。一种模型的抗炎药,地塞米松,封装在纳米成型中,使有效载荷的递送提高到发炎的肺部和体内的明显疗法疗效。总体而言,这项工作利用了生物膜涂层的独特优势,可以使用天然发生的目标配体相互作用来实现额外的靶向特异性。
摘要当前流动分解器(CFD)是一个已知的概念,已被证明可以有效地降低REBA 2 Cu 3 O 7(Rebco; re = Rare Earth)涂层导体(CC)的破坏性热点的可能性,通过提高正常区域的传播速度。但是,CFD概念的实现需要在制造过程中的其他步骤,该过程已经很复杂,并且一直在努力找到一种简单的卷轴到卷式制造方法。这项工作报告了使用固体蒸气银硫化技术的缓冲层CFD(BCFD)架构的制造途径的细节,以在高温超导体胶带中调整金属稳定剂的几何形状。在不同条件下处理的AG 2 S/AG/GDBCO三层型的微观结构和超导属性的分析显示了我们如何使用BCFD体系结构实现了新的定制功能CC。在DC限制实验中,由于NPZV的强大增强,这种BCFD-sulfide结构允许比常规体系结构(60 V s-1 vs. 1.2 V s-1)发电速度快得多。
摘要 立方体是纳米生物工程的产物,是一种自结构脂质纳米粒子,其作用类似于载药的诊断探针。本文,我们描述了一种制备组合载药立方体的简单方法,经原理验证,该立方体具有治疗癌细胞的作用以及诊断能力。抗癌药物顺铂和紫杉醇组合装载在立方体中。立方体上涂有一层聚-Ɛ-赖氨酸,这有助于避免药物最初的爆发性释放,并允许缓慢和持续释放以获得更好的疗效。用透射电子显微镜对立方体进行成像,并通过差示扫描量热法和X射线衍射图研究在体外分析其分散性。显微图像描绘了球形多角结构,很容易区分。分析表明,药物均匀分散在整个立方体中。通过 zeta 电位测量、体外释放和包封率研究进行了进一步表征。体外研究表明,立方体涂层最初成功地减少了药物的爆发性释放,并证实了随着时间推移,药物释放缓慢而持续。使用人肝癌 HepG2 细胞系评估了涂层、未涂层和空白立方体的细胞毒性比较,发现这些制剂完全无毒,与空白制剂相似。通过阻抗测量和荧光成像证实了立方体对 HeLa 细胞的治疗效果。此外,用涂层组合立方体处理的细胞阻抗降低证明了 HeLa 细胞的损伤,这通过荧光显微镜得到证实。
补充,它们在环境中的存在导致水生毒性,遗传毒性。增加了6,7人口增加并继续使用,再加上偶然的排放量将导致这些物种进一步增加。一旦这些污染物达到水源,它们就可以转移到其他非点源。抗生素尤其是很难降解,而30%至90%的剂量在有机体中仍未得到贡献。6抗生素作为良好健康的启动子的广泛使用可确保它们不断使用并以使用形式或有时更毒性的代谢物形式出现到环境中。它们的有毒作用以及对环境的不断投入的影响,导致了政策制定者,政府机构和科学界社区,以促进技术和策略,以治疗这些物质污染的水域。8
神经组织工程需要制造生物相容性支架,其化学和拓扑特性可以根据细胞功能和命运进行定制。[1–3] 具体来说,受生物启发的拓扑线索现已被广泛用作细胞指导材料,以调整细胞-材料界面处所需的细胞行为。[4–8] 其中,各向异性基质代表了一种有前途的工具,可用于开发适用于神经修复策略的支架。[9–14] 特别是,受细胞外环境中发现的纤维和原纤维的形状和几何形状的启发(例如,轴突束和延伸的神经突束),各向异性取向纤维成为决定神经突沿基质主轴排列和伸长以及促进神经元分化的理想候选者。[15–20]
粒径增加了这些粒子的效率[18]。因此,粒径和非聚集性非常重要FE-SEM和直方图的结果显示大多数PMA-DDA-DOX粒子小于55纳米,这对于药物载体来说是合适的尺寸。在图4中,缓释使PMA-DDA-DOX粒子有时间到达肿瘤细胞,并在到达肿瘤细胞后以几乎均匀的速率释放DOX,从而使药物的浓度在靶组织周围维持更长时间[19]。DDS最关键的方面之一是将药物递送到靶组织,这一因素与治疗和减少药物副作用直接相关[20,21]。通过选择合适的药物载体,如PMA-DDA-DOX,可以增强DOX的疗效,它显著地在肿瘤周围聚集