TMPRSS3 基因突变患者患有隐性耳聋 DFNB8/DFNB10。对于这些患者,人工耳蜗植入是唯一的治疗选择。一些患者的人工耳蜗植入效果不佳。为了开发针对 TMPRSS3 患者的生物治疗方法,我们构建了一种带有频繁的人类 DFNB8 TMPRSS3 突变的敲入小鼠模型。Tmprss3 A306T/A306T 纯合小鼠表现出与人类 DFNB8 患者相似的延迟性进行性听力损失。使用 AAV2 作为载体携带人类 TMPRSS3 基因,将 AAV2-h TMPRSS3 注射到成年敲入小鼠内耳会导致毛细胞和螺旋神经节神经元中表达 TMPRSS3。在平均年龄为 18.5 个月的 Tmprss3 A306T/A306T 小鼠中注射一次 AAV2-h TMPRSS3 即可持续恢复听觉功能,使其达到与野生型小鼠相似的水平。AAV2-h TMPRSS3 可挽救毛细胞和螺旋神经节神经元。这项研究证明了在人类遗传性耳聋老年小鼠模型中基因治疗的成功。它为开发 AAV2-h TMPRSS3 基因疗法治疗 DFNB8 患者奠定了基础,可作为独立疗法或与人工耳蜗植入相结合。
抽象目的骨螺旋层(OSL)是一种内部耳蜗骨结构,它从近二匹底座从底座到顶点,将耳蜗运河分离到Scala castibuli和Scala Tympani。OSL的孔隙率最近引起了科学家的注意,因为它的潜在影响了整体声音转导。OSL的Ves-tibular和鼓膜板之间的骨支柱在常规的组织病理学研究中并不总是可见的,因此通常缺乏或不完整的此类结构的成像。通过这项试点研究,我们首次瞄准了解剖学上的OSL详细证明和3D。方法,我们使用MicroCT使用较高的标称分辨率来测量人OSL的宽度,厚度和孔隙率,最高可达2.5 µm Voxel的大小。此外,从CT数据集创建了基础和中间的单个板的3D模型。结果,我们发现从基础转向顶端到顶点的鼓膜板和前庭板中孔隙率持续存在。鼓膜板似乎比基础和中间转弯的前庭板更多孔,而顶端中的多孔则较少。此外,3D重建使位于OSL板之间的骨支柱可以详细观察到。结论通过增强我们对OSL的理解,我们可以提高对听力机制的理解,并提高耳蜗模型的准确性和有效性。
人工耳蜗 一种电子假体装置,可帮助神经性听力损失患者识别声音。它由麦克风和语音处理器组成,可将声波转换为电信号,然后传输到耳蜗中植入的电极中。
摘要 开发恢复听力的新疗法需要有关耳蜗的空间尺寸、组织形态和感音神经状态的详细信息。然而,耳蜗深深嵌入颞骨,因此难以使用成像技术。在这里,我们在作为听觉研究的既定动物模型的物种中采用了三维 X 射线相位对比断层扫描和光片荧光显微镜及其组合。虽然光片荧光显微镜可以对听觉神经细胞进行特定的免疫标记,但 X 射线相位对比断层扫描使我们能够获得均匀体素大小的结构信息,并利用细胞核等亚细胞特征,而无需特定的样品制备。耳蜗形态的多尺度和多模态成像将促进基因治疗和人工耳蜗植入等创新耳聋方法的临床前研究。关键词:耳蜗,X射线相位对比断层扫描,光片荧光显微镜
摘要 开发恢复听力的新疗法需要有关耳蜗的空间尺寸、组织形态和感音神经状态的详细信息。然而,耳蜗深深嵌入颞骨,因此难以使用成像技术。在这里,我们采用了三维 X 射线相位对比断层扫描和光片荧光显微镜及其组合,用于已建立的听觉研究动物模型。虽然光片荧光显微镜可以对听觉神经细胞进行特定的免疫标记,但 X 射线相位对比断层扫描使我们能够获得均匀体素大小的结构信息,并利用细胞核等亚细胞特征,而无需进行特定的样品制备。耳蜗形态的多尺度和多模态成像将促进基因治疗和人工耳蜗植入等创新耳聋方法的临床前研究。关键词:耳蜗、X 射线相位对比断层扫描、光片荧光显微镜
摘要 开发恢复听力的新疗法需要有关耳蜗的空间尺寸、组织形态和感音神经状态的详细信息。然而,耳蜗深深嵌入颞骨,因此难以使用成像技术。在这里,我们采用了三维 X 射线相位对比断层扫描和光片荧光显微镜及其组合,用于已建立的听觉研究动物模型。虽然光片荧光显微镜可以对听觉神经细胞进行特定的免疫标记,但 X 射线相位对比断层扫描使我们能够获得均匀体素大小的结构信息,并利用细胞核等亚细胞特征,而无需进行特定的样品制备。耳蜗形态的多尺度和多模态成像将促进基因治疗和人工耳蜗植入等创新耳聋方法的临床前研究。关键词:耳蜗、X 射线相位对比断层扫描、光片荧光显微镜
摘要 开发恢复听力的新疗法需要有关耳蜗的空间尺寸、组织形态和感音神经状态的详细信息。然而,耳蜗深深嵌入颞骨,因此难以使用成像技术。在这里,我们在作为听觉研究的既定动物模型的物种中采用了三维 X 射线相位对比断层扫描和光片荧光显微镜及其组合。虽然光片荧光显微镜可以对听觉神经细胞进行特定的免疫标记,但 X 射线相位对比断层扫描使我们能够获得均匀体素大小的结构信息,并利用细胞核等亚细胞特征,而无需特定的样品制备。耳蜗形态的多尺度和多模态成像将促进基因治疗和人工耳蜗植入等创新耳聋方法的临床前研究。关键词:耳蜗,X射线相位对比断层扫描,光片荧光显微镜
摘要 开发恢复听力的新疗法需要有关耳蜗的空间尺寸、组织形态和感音神经状态的详细信息。然而,耳蜗深深嵌入颞骨,因此难以使用成像技术。在这里,我们采用了三维 X 射线相位对比断层扫描和光片荧光显微镜及其组合,用于已建立的听觉研究动物模型。虽然光片荧光显微镜可以对听觉神经细胞进行特定的免疫标记,但 X 射线相位对比断层扫描使我们能够获得均匀体素大小的结构信息,并利用细胞核等亚细胞特征,而无需进行特定的样品制备。耳蜗形态的多尺度和多模态成像将促进基因治疗和人工耳蜗植入等创新耳聋方法的临床前研究。关键词:耳蜗、X 射线相位对比断层扫描、光片荧光显微镜
颅内压 (ICP) 升高通常在多种情况下进行筛查,包括脑积水、假性脑瘤和创伤 [1]。测量 ICP 的标准实践包括腰椎穿刺,通过压力计测量脑脊液开放压力,或通过应变计传感的外部脑室引流盐水柱的直接颅内接口测量脑脊液开放压力 [2]。这显然是侵入性的,而且往往会让患者感到不舒服。需要常规 ICP 监测的患者必须定期忍受这一过程 [3]。显然需要一种微创或非侵入性技术来筛查 ICP 升高 [4]。许多研究试图开发非侵入性方法来识别 ICP 升高,例如经眼超声、颈动脉多普勒和耳蜗导水管传输 [2,5,6]。然而,到目前为止,还没有一种被证明足够可靠以用于临床实践 [2,4- 7]。一种有趣的技术是利用鼓膜搏动来推导 ICP [8,9] 。该技术最早在 20 世纪 70 年代被描述,利用了脑脊液 (CSF) 和中耳之间通过耳蜗导水管 [10] 的已知通道。许多研究表明,这种连接可以将心脏搏动波形 (ICP 波形) 传输到鼓膜 (TM),并可以从 TM 搏动中推导 ICP 波形 [10-14] 。尽管之前的测试已经能够推导这种波形,但耳蜗导水管多变的声学特性往往使得经典的 ICP 波形指标(如振幅和时间平均值)不可靠 [2,15] 。这种限制,加上最初检测这些波形所需的笨重而复杂的设备,使得这种
感觉性听力障碍是影响1000名新生儿的1 2和1000名青少年的最常见的听力障碍形式。超过50%的先天性听力障碍是遗传来源,某些形式的单基因耳聋可能是未来基因治疗的靶标。在临床表型,遗传诊断和咨询方面取得了良好的进步。疾病建模,例如在转基因小鼠中,近年来阐明了遗传听力障碍的疾病机制并了解了临床表型。小儿听力障碍的临床管理涉及助听器,人工耳蜗或脑干植入物,教育环境中的信噪比改善,言语治疗和手语。人工耳蜗植入物已大大改善了听力障碍和聋哑儿童的情况。仍然存在改善听力恢复的主要未满足临床需求。临床前研究保证,我们将目睹有关基因治疗的临床试验,并在未来十年内进行人工耳蜗植入物的下一个生成。此外,从干细胞产生感觉毛细胞和神经元的进展推动了疾病建模,药物筛查和再生方法。这篇评论Brie -fl y总结了小儿听力障碍的病理生理,并提供了有关改善听力恢复的创新方法的当前临床前开发的更新。©2020作者。由Elsevier B.V.这是CC下的开放式访问文章(http://creativecommons.org/licenses/4.0/)