摘要 地源热泵 (GSHP) 已被证明是减少建筑供暖和制冷碳排放的有效方法,但由于峰值需求的增加,这些系统的大规模运行给场地和电网带来了挑战。在本研究中,我们研究了如何使用分层水存储形式的热能存储 (TES) 来降低与 GSHP 系统相关的峰值日需求,从而提高其成本效益。将该系统与热电联产 (CHP) 电厂进行了比较,以研究电气化对从高效化石燃料设备过渡的大型能源用户的潜在成本和排放影响。本研究以先前的研究为基础,使用了一个很大的校园区域,并研究了电气化系统与最先进的化石燃料系统的各种影响。热泵和埋管热交换器 (BHE) 以及 TES 使用一种成熟的 TRNSYS 建模方法。带 TES 的 GSHP 系统按照行业标准建模,其规模能够实现资本和运营成本之间的最佳平衡。研究了独特的大型能源用户费率结构以及更常见的通用费率结构的成本。结果表明,在 GSHP 系统中添加 TES 可以降低 4.5% 的运营成本,但与基准 CHP 系统相比,成本仍会增加 5.64%。但是,研究还表明,将热泵策略性地集成到 CHP 系统中是最具成本效益的解决方案,仅使运营成本增加 4.71%。同样,研究还强调了不同费率结构的影响,在通用公用事业费率下,TES 仅可节省 0.75% 的成本。此外,研究还表明,热存储具有很大的需求减少潜力,添加存储会导致年峰值需求 kW 减少 7-22%,具体取决于费率结构。关键词:热泵、TRNSYS、能源系统建模、电气化、脱碳、热能存储、峰值需求亮点
激光冷却原子已被证明具有精度计量学的变革性,在最新的时钟和干涉仪中起着关键作用,并有可能在我们的现代技术能力中提供逐步变化。要成功探索其全部潜力,必须将激光冷却平台从实验室环境转换为便携式,紧凑的量子传感器,以在实践应用中部署。如果要实现明确的芯片尺度冷原子传感器,则需要将各种组成部分和专业知识合并。我们介绍了冷原子传感器微型化的最新发展,重点是使芯片尺度上激光冷却的关键组件。将讨论组件对传感器可伸缩性和性能的设计,制造和影响,以对下一代芯片尺度冷原子设备的前景进行讨论。
能源行业需要通过提高效率并增加可再生能源在能源组合中的份额来对气候变化采取行动。最重要的是,制冷,空调和热泵设备占全球用电量的25%至30%,并且在未来几十年中将大大增加。但是,一些浪费冷能源尚未完全使用。这些挑战引发了人们对开发冷热储能的概念的兴趣,该概念可用于回收废物冷能,增强制冷系统的性能并改善可再生能源的整合。本文全面回顾了低于零温度下的冷热能源存储技术的研究活动(从大约-270°C到0℃以下)。各种现有和潜在的存储材料都用其特性制成。针对不同存储类型进行的数值和实验性工作是系统地总结的。用
• 荣获 ICAR- CTCRI 农业企业孵化器最佳商业创意奖。 • 荣获由 Dr. Panjab Rao Deshmukh 管理技术与研究学院(纳格浦尔)组织的“全国商业计划竞赛”第四名。 • 入围由 IIT Bombay 组织的 Aakaar(IIT Bombay)Smart Pitch 决赛。 • 入围由 DERBI 基金会组织的 DS 社交技术创新挑战赛决赛。 • 荣获由比哈尔农业大学(比哈尔邦萨布尔巴格布尔)组织的 AGRI-HACKATHON 2021 第三名。
作为光子探测器:• 可用于从深紫外到中红外时间相关单光子计数的最高性能探测器• 在 1550 nm 处已证实的探测效率高达 98%• 时间抖动低于 3 ps• 有效的零暗计数率• 本征光子数分辨率• 阵列中最大计数率超过 1 Gcps
摘要:热膨胀是长度计量中导致不确定性的主要原因。NIST 设计了一种基于容器的折射仪,其目标是在测量氦折射率时将不确定度控制在 10 − 6;就环境条件下的折射率而言,精度目标是折射率为 3 × 10 − 11。为了达到这种精度水平,0 的长度。5 m 气室需要在 100 nm 以内。当在 20 ◦ C 下用坐标测量机测量容器长度时,这是可以实现的。但是,折射仪将在水和镓的热力学已知固定点附近运行,分别在 0 ◦ C 和 30 ◦ C 附近。容器由熔融石英玻璃制成,其标称热膨胀系数为 0。4 ( µ m/m)/K。因此,要将尺寸计量的精度扩展到20 ◦ C到水的三相点,需要知道熔融石英玻璃的热膨胀系数在10 (nm/m)/K或2 .5 %的范围内。描述了一种测量熔融石英玻璃热膨胀系数的方法。测量原理是监测法布里-珀罗腔谐振频率随温度变化的变化;法布里-珀罗腔由熔融石英玻璃制成。测量中的标准不确定度小于0 .6 (nm/m)/K,或0 .15 %。性能的限制可以说是反射相移温度依赖性的不确定性,因为薄膜涂层的热光系数和热膨胀系数都无法可靠地知道。但是,其他几个不确定性因素的数量级也相同,因此任何性能改进都需要付出巨大努力。此外,对三个不同样品的测量表明,材料的不均匀性导致熔融石英的有效热膨胀系数存在差异;样品间热膨胀的不均匀性比单个样品的测量不确定度高 17 倍。
即使使用现代计算机,以足够高的空间和时间分辨率对等离子体中的射频波进行数值建模仍然具有挑战性。不过,未来可以使用量子计算机加快此类模拟速度。在这里,我们提出了如何对冷等离子体波进行此类建模,特别是在非均匀一维等离子体中传播的 X 波。波系统以具有厄米汉密尔顿量的矢量薛定谔方程的形式表示。块编码用于通过可在量子计算机上实现的幺正运算来表示汉密尔顿量。为了进行建模,我们应用了所谓的量子信号处理算法并构建了相应的电路。在经典计算机上模拟了使用该电路的量子模拟,结果与传统的经典计算一致。我们还讨论了我们的量子电路如何随分辨率扩展。
冷喷涂增材制造 (CSAM) 使用惰性气体载体将金属粉末加速至超音速并将其喷射到目标物体上,随后粉末颗粒在目标物体上变形并通过固态结合粘附在基材上。通过更换粉末,该技术可用于制造多材料(或分级材料)部件。高性能液体火箭发动机 (LRE) 燃烧室通常是双金属的,结合了高热导率铜合金衬套和高强度镍合金结构夹套。因此,CSAM 工艺对于液体火箭发动机燃烧室制造具有许多优势。本文讨论了使用 CSAM 进行 LRE 制造的优缺点,然后描述了使用 CSAM 技术制造的演示双金属燃烧室的设计,并展示了制造试验的结果。
摘要 有效的热管理对电动汽车用锂离子电池的性能和耐久性至关重要。与传统的直通道冷板不同,本文提出并评估了一种具有发散形通道的新型冷板,以最大限度地降低冷板的最高温度和压降。与传统的直通道相比,发散形通道表现出更高的散热能力和更低的摩擦阻力,性能更佳。为了进一步降低局部流动阻力,开发并评估了具有 2 个入口和 1 个出口的发散形通道。研究发现,具有 2 个入口和 1 个出口的新设计可以成功降低压降 7.2%,并将最大温差从 4.69 K 降低到 3.94 K。最后,构建了具有逆流配置的电池冷却模块,实现了更小的最大温差。本研究有助于开发有效且高效的电动汽车电池冷却系统。
极性分子由于其固有的电偶极矩和可控的复杂性,成为标准模型 (BSM) 以外物理的精确测量搜索和量子模拟/计算的强大平台。这导致了许多在量子水平上冷却和控制分子的实验努力。由于其独特的旋转和振动模式,多原子分子(含有三个或更多原子的分子)最近引起了人们的关注,作为与原子和双原子分子相比具有明显优势和挑战的量子资源。在这里,我们讨论了多原子分子激光冷却到超冷状态的结果,以及使用多原子分子大大改进基本对称性测试、暗物质搜索和 CP 破坏 BSM 物理搜索的未来前景。
