简介 有人认为,继互联网之后,工业向太空迁移是下一个重大举措。深空航行/利用/商业化/殖民化正在迅速从人类负担得起的长期不安全、长期安全的东西负担不起的状况,转变为既负担得起又安全。这是由于一系列先进/革命性的技术大大提高了能力、降低了成本,从而确保了安全(参考文献 1-6)。太空商业化,现在是地球同步轨道及以下,每年接近 3500 亿美元的全球产业,随着深空商业化的出现,预计将发展成为数万亿美元的经济引擎。商业实体实时开发可重复使用的太空进入火箭,是深空操作这一假定转变的主要初始推动因素。这似乎将低地球轨道 (LEO) 接入成本降低了 14 倍。随着机器人/人工智能 (AI) 取代人类及其相关的运营成本,未来还将实现更大的降低(参考文献 7 和 8)。更便宜的太空进入被认为是国家空间协会空间发展路线图中要解决的首要问题。低地球轨道进入的历史成本水平长期以来一直是商业深空发展的主要抑制因素,对于地球静止轨道及以下的一些活动而言,这是当前商业空间的领域。第二组真正具有商业深空支持作用的技术是强大的协同组合,可实现信息技术、计算、机器人、人工智能、纳米以及现在的量子和能量学革命的大规模小型化、低成本和增强能力,以及人类健康和基于生物的空间原位资源利用 (ISRU)、合成生物学等(参考文献 9、10)。从历史上看,涉及人类的太空任务成本比机器人活动高出 500 倍左右。展望未来,自主机器人有望在接近人类的水平上运行(参考文献 11),除人类殖民外,还将降低人类在太空存在的成本和对深空商业化活动的运行要求。
植物与大量微生物群落相互作用,其中一些群落进入并居住在植物组织中而不会引起任何疾病或以其他方式产生负面影响。这些密切相关的微生物称为内生菌。“内生”一词源自两个希腊语“ endon”的意思,“ phyton”表示植物(Chanway,1996)。术语“内生物”首先是由De Bary(1866)引入的,用于在植物组织内生长的微生物。后来,根据研究人员的观察,对内生菌的定义和类型进行了修改。Hallmann等。 (1997)将内生菌定义为可以从植物的表面消毒组织中分离出来的微生物,而那些可以在不会引起任何疾病的宿主系统内生存的微生物。 一些研究人员还根据其类型(即细菌或真菌的类型,及其与及兼兼兼兼职或义务的植物的关系)分类(Rosenblueth andMartínez-Romero,2006年)。 但是,Hardoim等人。 (2015)在的基础上表征了内生物Hallmann等。(1997)将内生菌定义为可以从植物的表面消毒组织中分离出来的微生物,而那些可以在不会引起任何疾病的宿主系统内生存的微生物。一些研究人员还根据其类型(即细菌或真菌的类型,及其与及兼兼兼兼职或义务的植物的关系)分类(Rosenblueth andMartínez-Romero,2006年)。但是,Hardoim等人。(2015)在
包括参考书目和索引。ISBN 978-0-9788460-6-0(平装本:alk。纸质)i. 萨米人(欧洲人)——瑞典——历史。2.萨米人(欧洲人)
微塑料 (MP) 是一种较小的塑料,在水生环境中普遍存在。先前的研究报告称,从公共市场和养虾场收集的虾类的胃肠道中存在 MP。有报道称,包括潜在致病菌在内的生物膜群落可以附着在 MP 表面。MP 摄入后会带来重大的健康和经济风险,包括可能接触副溶血弧菌 (Vp)——一种在 MP 表面高浓度发现的显著虾病原体——增加虾的疾病风险并可能进入人类食物链。在这项研究中,对来自菲律宾布拉坎省虾场和不同湿货市场的凡纳滨对虾进行了 MP 污染测试以及 Vp 在 MP 表面的附着和定植测试,并进行了体外测试。分离的 MP 经过化学消化和浮选分离,然后用立体显微镜成像并根据其形态特征进行表征。分离的假定 MP 经常以不规则形状的碎片形式观察到。衰减全反射-傅里叶变换红外光谱结果证实,只有来自 Hagonoy 和 Meycauayan 湿货市场的南美白对虾获得的 MP 才会表现出与聚乙烯 (PE) 基塑料典型的 CH 拉伸振动相对应的特征吸收带。在一组原始的 PE 基塑料(一个表面较光滑(PE1),一个表面较粗糙(PE2))上观察到 Vp 的附着。扫描电子显微镜图像证实了 Vp 附着在这些 MP 表面,并显示最早在孵育 1 小时后就可以看到定植。PE2 导致粘附细菌的数量高于 PE1,这表明表面粗糙度在 MP 上的细菌定植中起着重要作用。然而,观察到的这种差异并不具有统计学意义,这表明还应考虑温度、pH、盐度和营养物质可用性等其他参数。这项研究表明,采样地点的虾受到了 MPs 的污染,并且基于 PE 的 MPs 可以成为 Vp 的定殖场所。
据称,水稻类胡萝卜素裂解双加氧酶 OsZAS 可产生一种促进植物生长的脱辅基类胡萝卜素——扎西酮。zas 突变株系表现出丛枝菌根 (AM) 定植减少,但这种行为背后的机制尚不清楚。在这里,我们研究了 OsZAS 和外源扎西酮处理如何调节菌根形成。微摩尔外源供应扎西酮可挽救根部生长,但无法修复 zas 突变株的菌根缺陷,甚至可降低野生型和 zas 基因型的菌根形成。在接种 AM 真菌后 7 天,zas 株系的独脚金内酯 (SL) 水平并未像野生型植物那样出现增加。此外,用合成的 SL 类似物 GR24 进行外源处理可挽救 zas 突变菌根表型,表明 zas 较低的 AM 定殖率是由相互作用早期阶段 SL 缺乏引起的,并表明在此阶段需要 OsZAS 活性来诱导 SL 产生,这可能是由 Dwarf14-Like (D14L) 信号通路介导的。OsZAS 在含丛枝细胞中表达,OsPT11-prom::OsZAS 转基因株系(其中 OsZAS 表达由在丛枝细胞中活跃的 OsPT11 启动子驱动)与野生型相比表现出更高的菌根化。总的来说,我们的结果表明,在植物体内对 OsZAS 活性进行基因操作会对 AM 共生产生与外源 zaxinone 处理不同的影响,并证明 OsZAS 影响 AM 定植的程度,充当涉及 SL 的调控网络的组成部分。
虽然人工智能 (AI) 基础设施的进步和发展通常被称赞为具有开启一个充满积极网络能力的美丽新世界的潜力,但目前这种潜力背后却隐藏着一个明显更黑暗的秘密。像中国这样的国家积极向全球推销先进人工智能技术的转让,特别是向中东和北非、撒哈拉以南非洲和拉丁美洲的盟友。中国不仅参与全球经济或发展发展中国家的网络基础设施,而且还分享其审查、虚假信息和舆论塑造技术,这些技术可能成为未来政权保护的手段,并可能破坏基层民主活动。中国并不认为网络力量是通往开放和信息交流新时代的大门,而是将网络的真正力量视为传统上维护国家安全和国内政治利益的工具。更令人印象深刻的是,大多数研究表明,到 2030 年,中国应该首先赶上美国,然后超越美国成为人工智能全球领导者。这是否预示着人工智能从网络和平建设者转变为事实上的网络殖民者的范式转变?
摘要微生物 - 微生物相互作用如何决定蚊子中的微生物复杂性。以前,我们发现,Serratia是一种改变载体能力并被视为媒介控制的肠道共生体,在相同条件下饲养的Culex quinquefasciatus中繁殖的埃及埃及埃及埃及。研究Serratia和Ae之间的不相容性。aegypti,我们表征了两种来自CX的serratia marcescens菌株。Quinquefasciatus并检查了他们感染AE的能力。埃及。两种Serratia菌株都感染了AE。aegypti,但是当微生物组的稳态破坏时,塞拉蒂亚的流行率和滴度与其本地宿主中的感染相似。检查多种遗传多样的AE。埃及线发现微生物干扰对马可氏链球菌很普遍,但是,AE的一条线。埃及很容易感染。对抗性和易感线的微生物组分析表明,肠杆菌科细菌与塞拉蒂亚之间存在逆相关性,以及在gnotobirotic系统中的实验共感染概括了干扰表型。此外,我们观察到对宿主行为的影响。暴露于AE的锯齿状。埃及破坏了他们的喂养行为,这种表型也依赖于与天然微生物群的相互作用。我们的工作强调了宿主的复杂性 - 微生物相互作用,并提供了微生物相互作用影响蚊子行为的证据。
拉古纳大学(ULL)。加那利群岛的公共卫生,拉古纳大学(ULL)。sáNchez,◦,◦sáNchez,◦,◦sánchez,◦38206大学的Crupogy Hospital Isners(HUC)。 Cherns@Ed
摘要 丛枝菌根真菌 (AMF) 是一种有益的土壤真菌,可以促进宿主植物的生长。准确量化植物根部中的 AMF 非常重要,因为定植水平通常可以表明这些真菌的活性。根定植传统上用显微镜方法测量,该方法可以看到根内的真菌结构。显微镜方法劳动密集型,结果取决于观察者。在本研究中,我们提出了一种相对 qPCR 方法来量化 AMF,其中我们根据植物基因标准化了 AMF qPCR 信号。首先,我们在计算机上验证了引物对 AMG1F 和 AM1,并表明这些引物涵盖了植物根部存在的大多数 AMF 物种,而不会扩增宿主 DNA。接下来,我们基于对矮牵牛植物的温室实验将相对 qPCR 方法与传统显微镜检查进行了比较,这些植物的 AMF 根定植水平从非常高到非常低不等。最后,通过使用 MiSeq 对 qPCR 扩增子进行测序,我们通过实验证实引物对排除了植物 DNA,而主要扩增了 AMF。最重要的是,我们的相对 qPCR 方法能够区分 AMF 根定植的定量差异,并且与传统显微镜定量结果高度相关(Spearman Rho = 0.875)。最后,我们对显微镜和 qPCR 方法的优缺点进行了平衡的讨论。总之,测试的相对 qPCR 方法提供了一种可靠的替代方法来量化 AMF 根定植,与传统显微镜相比,该方法对操作员的依赖性更低,并且可扩展到高通量分析。
在植物根部的微生物定植期间,特异性微生物激活的过程的识别受到元文字组学的技术约束的阻碍。这些包括缺乏参考基因组,数据集中宿主或微生物rRNA序列的高度表示,或难以实验验证基因功能。在这里,我们将无菌丝的丁香虫thaliana重新定殖,具有合成但代表性的根微生物群,可释放106个基因组序列的细菌和真菌分离株。我们使用了多个王国rRNA耗竭,深度RNA测序和读取参考微生物基因组来分析丰富的殖民者的植物元转录组。我们确定了在土壤界面差异调节的3,000多个微生物基因。翻译和能量生产过程在植物中持续激活,它们的诱导与细菌菌株在根中的丰度相关。最后,我们使用靶向诱变表明,在丰富的细菌菌株之一(一种可遗传可触及的杜鹃杆菌)中,需要多种细菌持续诱导的几个基因。我们的结果表明,菌群成员激活应变特异性过程,但也可以激活植物根的常见基因集。