最近的发现表明,迷幻疗法的潜在转诊效率潜在的经诊断疗法已经培养了我们对心理脑作用的理解的需求。功能性神经影像学调查发现,迷幻药可减少大型脑网络的功能分离。但是,除了这一普遍趋势之外,发现基本上是不一致的。我们在这里认为,基于复杂性科学的观点预示了大脑功能的分布,互动性和动态性质可能会使这些不一致的不一致可理解。我们提出,迷幻药会引起一种大脑功能的模式,该模式在动态上更具动态,多样,整合和调整以进行信息共享,并符合更大的批判性。这种“元”观点有可能统一过去的发现并指导直觉朝着引人注目的机械模型。
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此版本的版权持有人于2025年2月10日发布。 https://doi.org/10.1101/2025.02.10.637372 doi:Biorxiv Preprint
细菌已开发出各种防御机制,以避免对病毒和其他遗传寄生虫的快速进化和周转,以避免感染和杀死。这样的泛免疫系统(防御)包括越来越多的防御线,其中包括良好的先天和适应性系统,例如限制性模型,CRISPR-CAS和堕胎感染,以及新发现的机制仍然不足以理解。虽然防御系统的丰度和分布在完整和可培养的基因组中是众所周知的,但我们对它们在复杂的微生物群落中的多样性和丰富性的理解中存在空白。在这里,我们对从土壤,海洋和人类肠道的7759个高质量细菌种群基因组进行了大规模的深度分析。我们观察到大型门的防御频率和性质有很大变化,这与生活方式,基因组大小,栖息地和地理背景有关。防御者的遗传迁移率,其在防御岛上的聚类以及遗传变异性是系统的,并由细菌环境塑造。因此,我们的结果提供了环境不同细菌群落中存在的多种免疫屏障的详细图片,并为随后鉴定出未经文化的微生物中多元化的新颖和巧妙的策略奠定了基础。
在听觉感知过程中,神经振荡已知会与声学动态同步,但它们在听觉信息处理中的作用仍不清楚。作为一种可以通过声学参数化的复杂时间结构,音乐特别适合解决这个问题。在一项针对人类参与者的行为和脑电图联合实验中,我们研究了刺激的时间(声学动态)和非时间(旋律频谱复杂性)维度对神经同步的相对贡献,神经同步是一种刺激-大脑耦合现象,在这里操作上定义为声学和神经动态之间的时间相干性。我们首先强调低频神经振荡会稳健地与复杂的声学时间调制同步,这强调了这种耦合机制的细粒度性质。我们还揭示了增强音高、和声和音高变化方面的旋律频谱复杂性会增加神经同步。重要的是,这种操作增强了 theta(5 Hz)范围内的活动,这是一种与旋律音符速率无关的频率选择性效应,可能反映了所涉及的神经过程的内部时间限制。此外,虽然情绪唤醒评级和神经同步都受到频谱复杂性的正向调节,但未观察到唤醒和神经同步之间的直接关系。总体而言,这些结果表明,音乐的神经同步对听觉信息的频谱内容很敏感,并指示了听觉水平的处理,这应该与高阶情绪处理阶段区分开来。
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
疟原虫通过裂殖生殖复制,即异步核分裂,然后是半同步分裂和胞质分裂。成功的分裂需要双层膜结构,即内膜复合体 (IMC)。在这里,我们证明 Pf FBXO1 (PF3D7_0619700) 对无性分裂和配子体成熟都至关重要。在弓形虫中,FBXO1 同源物 Tg FBXO1 对子细胞支架的发育和子细胞 IMC 的组成部分至关重要。我们证明 Pf FBXO1 在发育中的裂殖子顶端区域附近形成类似的 IMC 起始支架,并单侧定位在恶性疟原虫的配子体中。虽然 Pf FBXO1 最初定位于分裂寄生虫的顶端区域,但随着分裂的进展,它会显示出类似 IMC 的定位。类似地,Pf FBXO1 定位于配子体中的 IMC 区域。诱导敲除 Pf FBXO1 后,寄生虫会发生异常的分节和有丝分裂,产生无法存活的子代。缺乏 Pf FBXO1 的配子体形状异常,无法完全成熟。蛋白质组学分析确定 Pf SKP1 是 Pf BXO1 的稳定相互作用伙伴之一,而其他主要蛋白质包括多种 IMC 膜蛋白和膜蛋白。我们假设 Pf FBXO1 是恶性疟原虫有性和无性阶段中 IMC 生物合成、染色体维持、囊泡运输和泛素介导的蛋白质翻译调控所必需的。
抽象理解城市环境的视觉复杂性可能会改善城市设计策略,并限制由于广告,道路标牌,电信系统和机械而引起的视觉污染。本文旨在通过向一组450个以上的互联网用户提交一组地理参考的照片来量化城市街景中的视觉复杂性。将本调查发出的平均复杂性排名与一组计算机视觉预测进行了比较,试图找到最佳匹配。总的来说,一个计算机视觉指标可以全面匹配调查结果,并未清楚地从分析中出现,但是一组感知的假设表明,某些类别的刺激更相关。结果表明,具有对比颜色区域和锋利边缘的图像如何更容易驱动高复杂性的感觉。
导电聚合物因其可用于设计微电子局部电活性图案而备受关注。在这项工作中,我们利用聚吡咯的特性,结合双极电化学引发的无线极化,产生局部电阻梯度图案。物理化学改性是由聚吡咯的还原和过氧化引起的,这会在预定位置的导电基板的不同位置产生高电阻区域。由于聚吡咯具有出色的柔韧性,可以形成 U 形、S 形和 E 形双极电极用于概念验证实验,并进行电化学改性以产生明确的电阻梯度。样品的 EDX 分析证实了局部物理化学改性。与更传统的图案化方法相比,这种方法的主要优势是双极电化学的无线特性以及可能对电化学改性的空间分布进行微调。
。CC-BY-NC-ND 4.0 国际许可证(未经同行评审认证)是作者/资助者,他已授予 bioRxiv 永久展示预印本的许可。
到目前为止,有关全息复杂性的文献几乎完全集中在(dÞ1) - 维抗 - de Sitter时空的背景下,而不是字符串或M理论中的全部高维仪表/重力二元性。我们提供了一个框架来研究全二元性中全息复杂性,从而解释了较高维理论中复杂性功能与抗抗清时空中的复杂性功能的关系,并且当复杂性功能可以普遍应用于衡量/重力二元性时,而不是特定的双对。我们还表明,仪表不变性以10维超级强度动作为关键示例来限制复杂性函数的边界项。最后,我们提出了按照这些考虑因素的新的通用复杂性函数,包括修订的规格不变的动作复杂性。