引言致病性T细胞引起许多疾病,包括大多数自身免疫性疾病和移植物与宿主疾病(GVHD)(1)。在保留正常T细胞和其他组织的同时选择性地靶向这些致病性T细胞是现代医学中治疗性开发的圣杯。到目前为止,泛免疫抑制药物(例如皮质类固醇)用于控制T细胞相关的炎症条件,临床功效不令人满意和许多严重的不良反应(2)。可以很好地确定,一旦被自动或同种抗原激活的致病性T细胞开始迅速生命,从而导致组织损伤,而其他正常T细胞保持静止。单独离开静态T细胞的同时选择性地靶向生命的T细胞,将是开发新药的有效策略,用于致病性T细胞介导的疾病。有丝分裂毒素选择性地杀死主动分裂细胞,并已成功地用于治疗癌症,因为肿瘤细胞通常会积极生长(3)。由于正常的组织细胞(如毛囊和肠上皮细胞)在生理条件下也会增殖,因此这些正常细胞也受到影响,在这些化学疗法中常见的不良反应中表现出来(4,5)。为了有选择地消除致病性增殖T细胞,需要将化学治疗性有丝分裂毒素直接递送到T细胞中。抗体 - 药物结合物(ADC)正在成为有前途的癌症治疗。这些癌细胞和致病性T细胞具有一个共同的特征 - 两者都在积极增殖。通过将有效的毒素结合到针对癌细胞表面抗原特异性的单克隆抗体(MAB)上而开发,该毒素在与表面抗原结合后,通过MAB选择性地输送到靶癌细胞中,并被内化地化为癌细胞而没有对其他组织的癌细胞杀死癌细胞(6)。单甲基极氨基蛋白E(MMAE)是一种有效的有丝分裂毒素,是几个FDA批准的ADC中的有效载荷,它通过迅速诱导细胞凋亡而杀死了主动分裂的癌细胞(7)。因此,已证明的ADC方法
为了确定T-DM1的DAR,使用Zenotof 7600系统进行了糖基化和去糖基化形式的完整质量测量。在高分辨率TOF MS光谱中观察到了两种形式的T-DM1的复杂电荷状态分布(图2A和2D)。来自生物制剂Explorer软件的完整蛋白反向溶液的结果表明,糖基化的T-DM1的复杂MS谱由不同的Glycoforms组成,这些糖基型(包括G0F,G1F和G2F)(与多达8个分子的有效载荷DM1(图2B和图2B和2B和2C)相结合。通过比较,去除N连接的糖基化导致了更简单的MS曲线(图2D – F),其中检测到携带8 dm1的脱脂化T-DM1。用<10 ppm的质量精度鉴定了两种形式的T-DM1形式,并通过Biologics Explorer软件自动集成。图3显示了T-DM1的糖基化和退化形式的DAR分布。在这两种情况下,主要的T-DM1物种的DAR值为2-4(图3)。
摘要简介B7-H3是儿科癌症的潜在靶标,包括神经母细胞瘤(NB)。vobramitamab duocarmazine(也称为MGC018,此处称为Vobra Duo)是针对B7-H3抗原的研究性抗体 - 毒剂偶联(ADC)。它是由抗B7-H3人源化IgG1/kappa单克隆抗体通过可切除的缬氨酸 - 核酸连接器与Duocarmycin-Hydroxybenzamide Azaindole(VC-Seco-Duba)化学结合的。vobra Duo在表达B7-H3的肿瘤中显示了初步的临床活性。方法通过在人NB细胞系的面板中通过流程仪评估B7-H3的表达。在单层和多细胞肿瘤球体(MCT)模型中评估了细胞毒性,分别通过水溶性四唑盐,MTS,增殖测定法和细胞滴度GLO 3D细胞生存能力测定法评估了细胞毒性。通过膜联蛋白V染色研究了凋亡细胞死亡。正常,假数迁移和切除的小鼠NB模型分别与原发性肿瘤生长,转移和循环肿瘤细胞有关,分别具有最小的残留疾病。结果所有人类NB细胞系以单峰方式表达细胞表面B7-H3。vobra Duo对所有细胞系(IC50范围5.1-53.9 ng/ml)和NB MCT(IC50范围17.8-364 ng/mL)以剂量依赖性和时间依赖的方式进行了细胞毒性。与用无关(抗CD20)DuoCarmycin-ADC治疗的动物相比,在原位和假数小鼠模型中,用1 mg/kg vobra Duo进行每周静脉治疗3周延迟了肿瘤的生长。vobra Duo对未表达人B7-H3的鼠NB细胞系(NX-S2)无效。然而,当与人类B7-H3的细胞共同培养时,NX-S2细胞在存在VOBRA DUO的情况下被杀死,这表明旁观者活性。Vobra Duo治疗4周,在原位和切除的NB模型中进一步提高了生存率。vobra Duo与TOPOTECAN-TEMOZOLOMIDE(TOTEM)进行了良好的比较,这是NB复发疾病的标准护理疗法,分别由两到三个重复的4周4周VOBRA DUO治疗延迟或停止肿瘤复发。在用图腾结合使用Vobra Duo处理的小鼠中观察到了进一步的生存率。Vobra Duo治疗与体重减轻,血液学毒性或临床化学异常无关。
有机染料和颜料是被排入水源的污染物的常见例子。随后,化学家搜索了新颖和有效的吸附剂,以从着色化合物中处理污水。偶联的微孔聚合物(CMP),在其他独特的优点旁边显示出高毛埃米特和柜员(BET)表面积和多孔形态,通过将染料分子摄入其大型且永久的毛孔,并在光线下消除它们,从而解决了这种挑战的情况。在本文中,我们采用了新的硫烷基链接的CMP的设计合成,其中含有bicarbazole,bi-fureenylidene和二苯甲基乙烯构建块,即:BC-TT,BF-TT和BIPE-TT CMP。对AS合成的CMP进行了所有常见的特征,包括化学,物理和光物理。除了其显着的表面区域达到522 m 2 /g和最大孔隙量(最大0.50 cm 3 /g)之外,它们还具有良好的热稳定性,具有最高值(降解温度¼460c; char tart fars yart yart yart yart yart yart hart yart hart hart hart hart¼67wt%)。更重要的是,已证明产生的聚合物具有吸附能力,并且具有若丹明B(RHB)和亚甲基蓝色(MB)染料的光催化降解。bc-tt CMP表现出最高的吸附效率,其容量为228.83 mg/g,以及MB染料摄取的最大性能(高达232.02 mg/g)。©2023 Elsevier Ltd.保留所有权利。使用这些CMP测量染料的光催化降解后,BC-TT-CMP也完全显示出催化效率的最高值,即用于RHB(速率常数:2.5 10 2 min 1)或MB染料(速率常数)(速率常数:3.5 10 2 min 1)。
摘要 受体介导的药物输送系统是一种很有前途的工具,可用于靶向恶性细胞以抑制/抑制恶性肿瘤而不干扰健康细胞。基于蛋白质的纳米载体系统在输送各种化疗药物(包括治疗性肽和基因)方面具有许多优势。在这项研究中,我们制造了葡萄糖结合的喜树碱负载的谷蛋白纳米粒子 (Glu-CPT-谷蛋白 NPs),以通过 GLUT-1 转运蛋白将喜树碱输送到 MCF-7 细胞。首先,通过还原胺化反应成功合成了谷蛋白结合的谷蛋白聚合物,并通过 FTIR 和 13 C-NMR 证实了这一点。然后,将喜树碱 (CPT) 负载到谷蛋白结合的谷蛋白聚合物中,形成谷蛋白结合的谷蛋白 NPs。研究了纳米粒子的药物释放能力、形态形状、大小、物理性质和 zeta 电位。制备的 Glu-CPT-谷蛋白 NPs 呈球形,本质上为无定形,尺寸范围为 200 nm,zeta 电位为 −30 mV。此外,使用 Glu-CPT-谷蛋白 NPs 进行的 MTT 测定证实了处理 24 小时后对 MCF-7 细胞具有浓度依赖性细胞毒性,IC 50 为 18.23 μg mL −1。体外细胞摄取研究表明 Glu-CPT-谷蛋白 NPs 可增强内吞作用并在 MCF-7 细胞中递送 CPT。用 IC 50 浓度的 NPs 处理后发现典型的凋亡形态变化,即凝聚核和扭曲的膜体。从 NPs 中释放的 CPT 也靶向 MCF-7 细胞的线粒体,显著增加活性氧水平并导致线粒体膜完整性的损伤。这些结果证实,小麦谷蛋白可以积极地充当重要的运载载体并增强这种药物的抗癌潜力。
摘要 纳米技术为将化疗药物精确递送至癌细胞提供了有效的方法,从而提高了疗效并减少了脱靶副作用。纳米级化疗药物的靶向递送通过两种不同的方法实现,即利用渗漏的肿瘤血管(EPR效应)和用各种肿瘤归巢肽、适体、寡核苷酸和单克隆抗体(mAb)对纳米粒子(NPs)进行表面改性。由于具有更高的结合亲和力和特异性,mAb 在检测选择性癌症生物标志物以及治疗各种类型的癌症方面受到了广泛关注。抗体偶联纳米粒子(ACNPs)是一种有效的靶向治疗方法,可高效地将化疗药物特异性地递送到目标癌细胞。ACNPs 结合了 NPs 和 mAb 的优点,可在肿瘤部位提供高药物负荷,具有更好的选择性和递送效率。 NP 表面的 mAb 识别靶细胞上表达的特定受体,并以受控方式释放化疗药物。适当设计和合成的 ACNP 对充分实现其治疗效益至关重要。在血流中,ACNP 会立即与生物分子相互作用,并形成蛋白质冠。蛋白质冠的形成会触发免疫反应并影响纳米制剂的靶向能力。在这篇综述中,我们提供了最近的研究结果,重点介绍了几种抗体结合方法,例如吸附、共价结合和生物素-亲和素相互作用。本综述还概述了蛋白质冠的多种作用以及 ACNP 在癌症治疗中的治疗诊断应用。
©2023 Wiley -VCH GmbH。保留所有权利。这是以下文章的同行评审版本:&Leong,W。L.(2023)。高功率和信号处理的无机电化学晶体管高度稳定的梯子型聚合物电化学晶体管触发了机器人手部控制。高级功能材料,已在https://doi.org/10.1002/adfm.202305780上以最终形式发布。本文可以根据Wiley使用自构货币版本的条款和条件来将其用于非商业目的。
治疗TGI%Cr CS5001,1 mg/kg,单剂量109 2/8 CS5001,0.5 mg/kg,单剂量98 0/8 0/8 CS5001,0.25 mg/kg,单剂量(1/20 mtd)60 0/8 CS5001BMK1,2.5 mg,1/8 cs5001bmk1,2.5 mg,dosd(1/8) CS5001BMK1,2.5 mg/kg,QWX3 78 0/8