蛋白酶在原核生物和真核生物中都起着无处不在的作用。在植物中,这些酶在多种生理过程中充当关键调节剂,侵蚀性蛋白质瘤,细胞器开发,衰老,播种,蛋白质加工,环境应激反应,环境应激反应和程序性细胞死亡。蛋白酶的主要功能涉及肽键的分解,导致蛋白质的不可逆翻译后修饰。它们还充当信号分子,最终调节细胞活性,分别分裂并激活了脱肽。此外,蛋白酶通过将错误折叠和异常蛋白质降解为氨基酸而导致细胞修复机制。此过程不仅有助于细胞损伤修复,而且还可以调节生物学对环境压力的反应。蛋白酶在植物素的生物发生中也起着关键作用,该植物激素的生长,发育和对环境挑战的反应(Moloi和Ngara,2023年)。现代农业努力满足由于气候变化和人口迅速增长而导致的粮食,饲料和原材料需求的增加。气候变化是对作物产量潜力产生负面影响的主要因素。在植物防御生化机制内部,蛋白水解酶是几种生理过程的关键调节剂,包括环境应激反应。与动物不同,植物不具有带有移动防御者细胞的自适应免疫系统,因此它们具有通过激活触发生理,形态和生化变化的不同保护机制来适应和适应环境条件的策略。
数据中心已经建立了建筑业:“数据中心行业是目前最大的建筑业,数据中心项目大约是其当前项目的⅓至½,近2/3s。” “电气工人表明需求已从300-500增加了学徒计划,并且可能会增长。工人留在州并从项目到项目。”
遗传和产前环境因素塑造了后来的胎儿发育和心脏代谢健康。遗传和产前环境因素的关键靶标是胎盘的表观组,这是一种与胎儿生长和以后疾病有关的器官。这项研究有两个目的:(1)识别和功能表征胎盘可变区域(VMR),它们是表观基因组中具有高个体间甲基化变异性的区域; (2)研究胎儿遗传基因座和12个产前环境因素(母体心脏代谢,心理社会,人口统计学和与产科相关)对甲基化的贡献。akaike的信息标准用于选择四个模型中的最佳模型[仅产前环境,仅基因型,基因型和产前环境(G + E)的添加效应以及它们的相互作用效果(G×E)]。我们在胎盘中确定了5850 VMR。在70%的VMR中甲基化最好用G×E解释,其次是基因型(17.7%)和G + E(12.3%)。单独的产前环境最好仅解释了0.03%的VMR。我们观察到95.4%的G×E模型和93.9%的G + E模型包括孕妇年龄,均衡,递送模式,孕产妇抑郁症或妊娠体重增加。VMR甲基化位点及其调节性遗传变异含量(p <0.05),对于已知与调节功能和复杂性状联系的基因组区域。这项研究提供了胎盘中VMR的全基因组目录,并强调指出,通过整合遗传和产前环境因素,最好阐明胎盘DNA甲基化的胎盘DNA甲基化的变化,而仅通过环境因素而言,可以最好地阐明胎盘DNA甲基化的变化。
弧菌物种是海洋原核生物,居住在多种生态壁ches,定居非生物和生物表面。这些细菌是全球碳循环中的重要参与者,吸收了数十亿吨的碳(和氮)代谢物。对包括几丁质酶,糖转运蛋白和修饰酶的过程的许多细菌蛋白进行了很好的研究。然而,在存在几丁质的存在下,遗传功能相互作用和主要驱动因素是主要的碳源。为了解决这个问题,我们进行了转座子测序(TN-Seq),以确定在几丁质上生长在几丁质上作为唯一碳源的颤动性溶血性突变体的遗传适应性。以及验证与几丁质代谢相关的已知颤音基因,我们的数据新确定了未分类的OPRD样进口壳质蛋白和HEXR家族转录调节剂的重要作用。此外,我们在功能上暗示了HEXR在调节副溶血性环境生存的多个生理过程中,包括碳同化和细胞生长,生物膜形成和细胞运动。在营养限制条件下,我们的数据揭示了对丝状细胞形态中HEXR的要求,这是副溶血性环境适应性的关键特征。因此,由HEXR介导的重要进口孔蛋白和基因组调节支持多个生理过程,以实现弧菌念珠菌的生长和环境适应性。
虽然在理论上和体外都很好地理解了转录和DNA超串联之间的反馈,但在体内仍有待量化。在这次演讲中,我将介绍我们的工作,通过在大肠杆菌中的质粒上意识到这一差异,这是理论和体外研究的基础概念性的“双转录 - 环模型”。,我们测量了基因表达如何随启动子和拓扑障碍的距离而变化。我们发现基因表达取决于与上游屏障的距离,但不取决于下游屏障,其依赖性强度依赖于启动子。i然后将提出DNA转录的第一原则生物物理模型,该模型能够对这些发现进行定量合理化。该模型与可用的体外测量值进行了参数化的RNA聚合酶的结合,启动和伸长,以及拓扑异构酶的作用,这些参数受到我们的实验结果的约束。通过将其与数据进行比较,它支持Topoi和Gyrase必须在基因上游和下游分别具体起作用,并预测Topoi比Gyrase不那么活跃。它还突出了托托伊的拮抗作用,托图伊既促进伸长率又倾向于抑制起始。
Constraining human contributions to observed warming since preindustrial 1 Nathan P. Gillett 1 , Megan Kirchmeier-Young 2 , Aurélien Ribes 3 , Hideo Shiogama 4 , Gabi Hegerl 5 , 2 Reto Knutti 6 , Guillaume Gastineau 7 , Jasmin G. John 8 , Lijuan Li 9 , Larissa Nazarenko 10 , Nan 3 Rosenbloom 11,ØyvindSeland 12,Tongwen Wu 13,Seiji Yukimoto 14,Tilo Ziehn 15 4 5 1加拿大气候建模和分析中心,环境与气候变化6加拿大,加拿大,加拿大,不列颠哥伦比亚省维多利亚州,加拿大,加拿大。7 2加拿大加拿大多伦多的环境与气候变化的气候研究部。8 3 CNRM,德卢兹大学,Météo-France,CNRS,Toulouse,法国。9 4日本10号全球环境研究中心,美国国家环境研究所。11 5爱丁堡大学,地球科学学院,爱丁堡,英国。12 6苏黎世Eth,瑞士苏黎世大气与气候科学研究所。13 7 Locean/Institut Pierre Simon Laplace,法国巴黎。14 8 NOAA/OAR/地球物理流体动力学实验室,美国新泽西州普林斯顿。15 9 Lasg,中国北京大气物理研究所。16 10 NASA戈达德太空研究研究所,美国纽约,美国。17 11 NCAR,美国科罗拉多州博尔德。18 12挪威气象学院,挪威奥斯陆。19 13中国气象局北京气候中心,中国北京。20 14日本杜斯库巴气象研究所。21 15 CSIRO海洋和氛围,澳大利亚维多利亚州阿斯彭代尔。22 23的巴黎协定当事方同意举行全球平均温度升高24'以下24'以高于工业化的水平低于2°C,并“追求限制温度25升高到前工业水平高1.5°C的努力”。监视人类26引起的气候强迫对迄今为止的贡献是了解27个目标进步的关键。在这里,我们使用来自检测和归因的气候模型模拟28模型对比项目(DAMIP),以及正则最佳指纹29(ROF),以估计人为强迫在2010 – 2019相对于1. 1850-19的全球温度中,全球30次平均温度在全球30次平均温度中,与1.19的平均温度相比,与1.19的平均温度相比,造成了0.9-1.3°C,相比之下。气体和气溶胶的变化分别为32 1.2 - 1.9°C和-0.7 - -0.1°C,并且自然强迫可忽略不计。33这些结果证明了迄今为止对气候的实质性影响,以及达到巴黎协议目标所需的34行动。35 36在二十年以上,检测和归因技术已被用来识别37人在全球温度变化中的影响,并量化了个人38强迫对观察到的变化的贡献1-3。当事方对巴黎协定4的承诺'持有39的39全球平均温度升高至高于工业前水平的2°C低于2°C,而40
睡眠障碍在自闭症谱系障碍(ASD)的青年中普遍存在。研究人员认为,昼夜节律功能障碍可能导致睡眠问题或加剧ASD症状。但是,这是有限的遗传证据。还不清楚一般人群中通过GWAS鉴定的失眠风险基因如何与ASD和常见的睡眠问题有关,例如ASD中的失眠性质。我们调查了包括昼夜节律途径基因和失眠风险基因对ASD风险以及ASD儿童的睡眠障碍的拷贝数变体(CNV)的贡献。我们研究了Simons Simplex Collection(SSC)和MSSNG数据库的5860 ASD Probands和2092个未受到影响的兄弟姐妹,以及来自两个未选择人群(Imagen and Generation scotland)的7509个人。睡眠持续时间和失眠症状是SSC概率的父母。我们分别识别335和616罕见的CNV,分别包含昼夜节律和失眠风险基因。与兄弟姐妹和未选择的对照相比,ASD概率中的缺失和复制在ASD检验中的代表性过高。 对于失眠风险基因,缺失(非重复)与两个队列中的ASD相关。 调整认知能力后,结果仍然很重要。 与含有其他基因的CNV相比,含有昼夜节律途径和失眠风险基因的 CNV与ASD的相关性更强。 昼夜节律基因不会影响ASD中的睡眠持续时间或失眠特征。 失眠的风险基因不耐受单倍努力的能力增加了复制时失眠的风险。缺失和复制在ASD检验中的代表性过高。对于失眠风险基因,缺失(非重复)与两个队列中的ASD相关。调整认知能力后,结果仍然很重要。与含有其他基因的CNV相比,含有昼夜节律途径和失眠风险基因的 CNV与ASD的相关性更强。 昼夜节律基因不会影响ASD中的睡眠持续时间或失眠特征。 失眠的风险基因不耐受单倍努力的能力增加了复制时失眠的风险。CNV与ASD的相关性更强。昼夜节律基因不会影响ASD中的睡眠持续时间或失眠特征。失眠的风险基因不耐受单倍努力的能力增加了复制时失眠的风险。CNV涵盖昼夜节律和失眠风险基因增加ASD责任,几乎没有对睡眠障碍的影响。
。cc-by-nd 4.0国际许可证。是根据作者/资助者提供的预印本(未经同行评审认证)提供的,他已授予Biorxiv的许可证,以在2025年2月23日发布的此版本中显示此版本的版权持有人。 https://doi.org/10.1101/2025.02.17.637601 doi:Biorxiv Preprint
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是此预印本版本的版权持有人,该版本发布于2025年2月8日。 https://doi.org/10.1101/2025.02.03.636256 doi:Biorxiv Preprint
关于遗传和环境对大脑功能影响的研究通常侧重于大脑区域之间的联系。一种不同但尚未探索的方法是检查局部大脑区域内的活动。我们研究了基因和环境效应对局部大脑功能的两个特定指标的影响:区域同质性 (ReHo) 和低频波动分数振幅 (fALFF)。参与者两次从青少年双胞胎样本中抽取(平均年龄分别为 11.5 岁和 13.2 岁,N = 278 和 248)。结果表明,遗传和环境因素影响了几乎所有 210 个皮质区域的大脑功能。此外,影响第一波(9-14 岁)ReHo 和 fALFF 值的遗传和常见环境因素也影响了许多区域第二波(10-16 岁)的值。然而,遗传和常见环境因素的影响在整个皮质中各不相同,在不同区域表现出不同的模式。此外,我们发现第 2 波中新的(即独立的)遗传和环境影响大脑活动,同样具有区域模式。探索性分析发现焦虑和抑郁症状与颞叶几个区域的局部大脑功能之间存在微弱关联。这些发现与其他静息状态功能 MRI 指标(即功能连接)的类似研究一致。