比例[1] - [2]。SCC输出阻抗与电容器值C fly和工作频率F SW的乘积成反比[3]。因此,将工作频率提高10倍或多或少地降低了具有相似因素的被动组件的足迹。但是,开关损耗增加了10倍,从而降低了功率效率。低功率 - 例如MW量表及以下 - 如图1如果保持大于90%的效率,则开关损耗限制了可实现的工作频率。由于工作频率有限,因此电容密度较高的电容器是增加功率密度(w/mm 3)[4] - [5]的替代方法。尽管如此,电容密度的增加限制为几个200 nf/mm 2 [6](深部电容器),无法保持低功率下的不可忽略的开关损失。另外的电容器和电感器,第三能量
摘要 —。随着可再生能源和能源存储的日益普及,包括电压源转换器 (VSC) 和直流/直流转换器在内的高功率转换器在电网中占有相当大的份额。这些高功率转换器可用于通过控制其运行模式来控制变压器的过载。对于 VSC,运行模式包括整流和逆变操作,对于直流/直流转换器,运行模式包括降压和升压操作。这些操作模式由提出的算法管理,该算法感应配电变压器处理的功率并将其保持在指定的阈值内。该算法通过控制从电网到电池存储的功率流来实现所有这些。所有功率转换器都在闭环中运行,其中使用 PI 控制跟踪参考。在本文中,作者通过引入模糊控制提高了功率转换器的性能。在 MATLAB/Simulink 环境中开发了一个包括电网、变压器、交流母线、动态负载、VSC、直流/直流转换器和电池存储的仿真模型。模拟变压器过载测试案例,评估功率变换器PI控制和模糊控制的性能。结果表明,模糊控制的性能优于PI控制。
电源电压,V DD1 、V DD2 和 V DD3 (见注 1) 6.5 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .输出电压范围,VO −0.3 V 至 V DD + 0.3 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 峰值输入电流(任何数字输入) ± 10 mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .峰值总输入电流(所有输入)± 30 mA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 工作自然通风温度范围,TA:TLC1550I,TLC1551I −40 ° C 至 85 ° C . . . . . . . . . . . . . . . . . . . . TLC1550M −55 ° C 至 125 ° C . . . . . . . . . . . . . . . . . . . 存储温度范围,T stg −65 ° C 至 150 ° C . . . . . . . . . . . . . . . . . . . . . 10 秒外壳温度:FK 或 FN 封装 260 ° C . . . . . . . . . . . . . . . ..................................................................................................................................... 距外壳 1.6 毫米(1/16 英寸)处的引线温度持续 10 秒:J 或 NW 封装 260 °C ....................................................................................................................................
电源电压,V DD1 、V DD2 和 V DD3 (见注释 1)6.5 V 。........................................输入电压范围,V I (任何输入) −0.3 V 至 V DD + 0.3 V ..。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。输出电压范围,V O −0.3 V 至 V DD + 0.3 V。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。峰值输入电流(任何数字输入)± 10 mA 。......................。。。。。。。。。。。。。.....................峰值总输入电流(所有输入)± 30 mA .....。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。....工作自然通风温度范围,T A :TLC1550I、TLC1551I −40 ° C 至 85 ° C ......................TLC1550M −55 ° C 至 125 ° C ................................存储温度范围,T stg −65 ° C 至 150 ° C .....。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。........10 秒外壳温度:FK 或 FN 封装 260 °C .............。。。。。。。。。。。。。。。。。。。。。。。。..距外壳 1.6 毫米(1/16 英寸)处的引线温度持续 10 秒:J 或 NW 封装 260 ° C ..........
电力电子产品的可靠性分析是一个领域,随着电力电子设备变得越来越普遍,对电力网络基础架构的兴趣越来越大。光伏发电机系统在功率点跟踪的一般操作中使用电力电子设备,并且可能包含电源转换器以增强输出电压和/或转换为交流电流以连接到电网。计划PV发电机系统时,该系统的可靠性对于商业和住宅系统都引起了人们的极大兴趣[1]。可靠性分析可用于不同的目的。它可以用作产品资格资格的标准[2],在设计新产品时作为设计指标[3],它也可以帮助决定何时执行预防性维护[4]。在设计PV发电机系统时,有必要了解系统预期位置的太阳辐照度和环境温度,以确定投影功率,因此,该系统的利润会产生,也可以估算已安装的生成器系统的寿命。为了准确确定系统的年度负载,必须对系统的热行为进行建模。使用系统设计得出的模型用于确定热系统行为,对于电力电子来说,这是电源设备降解和故障的主要驱动力[5]。热
和减少电源转换器的占地面积 [1,2]。正因为如此,一些制造商越来越多地开发基于 SiC 和 GaN 技术的电源转换器。光伏逆变器、电机驱动逆变器、不间断电源 (UPS) 和笔记本电脑充电器等应用是可用的商用 WBG 电源转换器的几个例子。几项研究 [1,2] 报告了 WBG 转换器在特定应用中的潜在节能效果。然而,这些调查是基于学术界开发的电源转换器,而不是商业产品,通常与行业标准和商业产品要求不兼容。在这项工作中,我们估计了几种应用中每年全球节能潜力,考虑用商用 WBG 替代实际的硅基商用电源转换器。这是第一项评估商用转换器能源潜力的研究,其结果与最先进的工业技术兼容。我们搜索了每个选定应用的制造商,以获得基于 WBG 系统的可用产品和相关技术信息。我们的分析提供了 WBG 系统的节能潜力。
图 5 左侧显示了 HR1211 的电流模式部分,右侧显示了通用电源适配器中的组合芯片。该部件实现了具有多次可编程 (MTP) 存储器和非易失性存储器 (NVM) 的数字核心。HR1211 提供标准通用异步接收器发送器 (UART),允许与专用图形用户界面 (GUI) 进行通信。使用此功能,电源设计人员可以选择控制 PFC 和 LLC 级所需的参数。HR1211 中的 PFC 控制器采用获得专利的数字平均电流控制方案来实现混合 CCM/DCM 操作。
AC 交流电 AFC 碱性燃料电池 APU 辅助动力装置 ASE 车用斯特林发动机 ATDC 上止点之后 B 电池 BMEP 制动器平均有效压力 BSFC 制动器燃油消耗率 BTDC 上止点之前 C 冷凝器 CC 燃烧室 CCB 燃烧室鼓风机 CO 一氧化碳 CVT 无级变速器 CCGT 联合循环燃气轮机 DC 直流电 DMFC 直接甲醇燃料电池 DOE 能源部 DP 动态规划 E 能源 EC 能量转换器 ECGT 外燃式燃气轮机 ECU 电子控制单元 EECU 发动机电子控制单元 EG 电动发电机 EG 废气 EM 电机 EMS 能源管理策略 EPA 环境保护署 EREV 增程式电动车 FC 燃料电池 FC 燃油消耗 FCS 燃料电池系统 FCV 燃料电池车 G 变速箱 GHG 温室气体 GT 燃气轮机 GWP 全球变暖潜能值 H2 氢气 He 氦气 HEV 混合动力电动车 HEX 热交换器 HSS 氢气储存系统 ICE 内燃机 IcRGT等温压缩再生式燃气轮机 IcRIeGT 等温压缩再生式等温膨胀燃气轮机 IcRReGT 等温压缩再生式再热燃气轮机 IRGT 中间冷却再生式燃气轮机 IRReGT 中间冷却再生式再热燃气轮机
摘要 - 在本文中,我们通过分析使用网格连接转换器的瞬态稳定性,该转换器具有网格形成的com-prec-per-per-proop Control,也称为可调节的虚拟振荡器控制。从理论上讲,我们证明复杂的下垂控制是一种最先进的网格形成控制,始终具有稳定的状态平衡,而经典的下垂控制则没有。我们在网格干扰下为复杂的下垂控制瞬态稳定性(全球渐近稳定性)提供了定量条件,这超出了经典下垂控制的局部局部(非全球)稳定性。对于复杂下垂控制的瞬时不稳定性,我们揭示了不稳定的轨迹是有界的,表现为极限循环振荡。此外,我们将稳定性从二阶网格形成控制动力学扩展到全阶系统动力学,这些动力学还涵盖电路电磁瞬变和内环动力学。我们的理论结果有助于深入了解复杂下垂控制的瞬态稳定性和稳定性,并为参数调整和稳定性保证提供了实用的指南。