ElenaFernándezTorres摘要结核病(TB)仍然是全球重大的健康挑战,由于多药耐药性结核分枝杆菌(MTB)的兴起而加剧。由于抗性机制而导致的现有药物的效率低下需要新颖的药物靶标和优化的药物输送系统。这项研究旨在使用CRISPR干扰(CRISPRI)筛查确定MTB中的必要药物靶标,并评估基于微晶纤维素(MCC)的配方效应以持续药物递送。使用DCAS9介导的转录抑制构建了一个基因组 - 宽CRISPRI文库,并使用qPCR和RNA测序(RNA-Seq)评估了基因敲低效率。使用肉汤稀释测定法和菌落形成单位(CFU)枚举评估了基因抑制对细菌存活和药物敏感性的影响。基于MCC的Isoniazid制剂是使用湿的颗粒方法开发的,并通过扫描电子显微镜(SEM),X射线衍射(XRD)和傅立叶变换红外光谱(FTIR)来表征。使用USP溶解设备II评估了体外药物释放曲线,并进行了统计分析,包括ANOVA和Pearson相关性,以确定重要的趋势。结果表明,高CRISPRI敲低效率与降低的细菌存活率相关(r = -0.78,p <0.0001),表明成功鉴定了基本基因。细菌存活与利福平MIC之间的正相关(r = 0.61)证实,敲低会影响药物敏感性。基于MCC的制剂显示在24小时内持续释放药物,在MCC药物释放和细菌存活之间存在很强的负相关(-0.68),证实了延长的抗菌活性。该研究得出结论,CRISPRI是结核病药物靶标识别的有力工具,而基于MCC的配方为持续药物递送提供了有希望的策略。未来的研究应在体内药代动力学,全基因组测序和先进的药物携带者中整合,以进一步优化结核病治疗策略。关键字:结核病,CRISPR干扰,结核分枝杆菌,基因敲低,细菌存活,微晶纤维素,耐药性,持续药物释放,药物释放,精确药物,精密医学引起的结核病(TB),由Mycobacterium witter(Mimabacterium witter)造成了1.超过100个全球的造成(Mimobacterium witter and Fresprim andim Million Millionb)(Mim Million Millionb),是一个1. Mimb)。每年死亡(Samukawa等,2022)[1]。耐多药(MDR-TB)和广泛的耐药性结核(XDR-TB)的出现增加了对新型治疗策略的迫切需求(Cheung等,2021)[3]。传统的药物发现方法由于细菌代谢,休眠机制和内在耐药性的复杂性而难以确定新的有效靶标(Rock等,2016)[2]。在响应中,CRISPR干扰(CRISPRI)技术已成为鉴定和验证细菌生存,耐药性和代谢脆弱性所需基因基因的革命性工具(Yan等,2022)4 []。CRISPRI利用催化死亡的CAS9(DCAS9)酶选择性地抑制基因表达而无需诱导双链断裂,从而在活细菌细胞中实现了高通量药物靶标筛查(McNeil等人,2021年)[3]。虽然CRISPRI已广泛用于癌症研究和细菌遗传学,但通过鉴定出新的可药物靶标和抗生素协同作用来增强结核病药物发现的潜力仍未得到充分激发(Choudhery等,2024)[5]。除了确定新药靶标外,改善药物输送系统对于增强治疗功效和患者依从性至关重要(Kalita等,2013)[6]。当前的结核病药物治疗方案很长(6-9个月),导致辍学率高,治疗不完全,
摘要 本综述讨论了有机分子结晶多晶型之间的固-固相变分析。虽然活性药物成分 (API) 是综述的范围,但无论有机分子是否具有生物活性,都没有特别定义其在结晶状态下的相互作用。因此,其他小有机分子也已纳入本分析,在某些情况下也讨论了聚合物。本综述的重点是实验分析;但是,增加了计算和理论方法部分,因为这些方法变得越来越重要,并且显然有助于理解例如转变机制,因为结果可以很容易地可视化。讨论了晶体结构之间固-固相变的以下方面。讨论了涉及热力学平衡的多晶型之间的相变热力学以及与吉布斯自由能密切相关的变量温度和压力。讨论了有机结晶固体中的两种主要转变机制,即置换和协同转变。回顾了用于理解 API 不同多晶型之间的机制和热力学平衡的实验方法。本文讨论了多晶型物性的转换,并回顾了热存储和释放,因为这是固态相变的主要应用之一。限制相变对于药物产品的控制很有吸引力,本文对其进行了回顾,因为它可能有助于通过使用亚稳态相来提高 API 的生物利用度。最后,本文讨论了有机材料的二级相变,这种相变似乎很少见。可以得出的结论是,尽管人们对多晶型和相变的一般理论有了很好的理解,但它对特定分子的作用仍然难以预测。
自 19 世纪以来,人们就开始对物质进行研究,并长期将其分为我们熟悉的固、液、气三相。固体分为具有有序原子结构的晶体材料或具有无序原子结构、没有明确顺序的非晶体(无定形)材料。钻石是晶体材料的典型例子。其碳原子的有序排列使其成为世界上最坚硬的物质。玻璃是无定形材料的典型例子,由硅酸等成分随机聚集而成。多年来,这种固体概念一直是科学界不容置疑的常识。然而,1984 年,一篇论文突然报道了一种既不是晶体也不是无定形的材料,它在 Al-Mn(铝锰)合金中被发现,震惊了科学界。1 这种发现的材料缺乏晶体的有序重复模式,但仍表现出固定的结构有序度,因此被称为准晶体。
1。新墨西哥州公平地区:纳瓦霍国家人权委员会继续参加新墨西哥州博览会地区工作组。该小组正在制定2025年会议期间向新墨西哥州立法机关提出的立法。在代表纳塔莉·菲格罗亚(Natalie Figueroa)的协助下起草联合决议。办公室还参加了印度事务临时委员会会议;一个是通过虚拟演讲,第二个是在新墨西哥州圣达菲的。纳瓦霍国家人权委员会在2024年11月8日委员会会议上支持联合决议。联合决议将构成由9名成员组成的独立重新划分委员会,由国务卿使用加权制度选出的六名成员,六名成员将选择剩余的三名成员,成员代表国家的人口统计和地理构成,保护少数派投票权,并采用众议院,参议院和教育教育养育计划。国会计划将留给立法机关,但纳瓦霍民族人权委员会建议新委员会采用所有全州重新划分计划。
在压力下,在LA 3 Ni 2 O 7中发现了高温超导性。然而,从理论上讲,对其配对对称性尚未达成共识。通过将密度函数理论(DFT)结合,最大定位的频函数和线性差距方程与随机相位及相关性,我们发现,如果La 3 Ni 2 O 7的配对对称性为D XY,则如果其DFT频带的结构准确地由下flowdolded byborbiane twopord twopold twopord twopord twoce xy。更重要的是,我们揭示了La 3 Ni 2 O 7的配对对称性敏感地取决于两个Ni-e G轨道之间的晶体场分裂。ni-e g晶体场的略有增加分裂改变了配对对称性从d xy到s±。这种转变与费米速度和敏感性的变化有关,而费米表面的形状几乎保持不变。我们的工作强调了多轨超导体中低能电子结构对对称性的敏感依赖性,当一个人计算其配对对称性时,它在下垂过程中需要注意。
摘要:在辐射下对钙钛矿设备中的界面特性的理解对于其工程至关重要。在这项研究中,我们展示了CSPBBR 3钙钛矿纳米晶体(PNC)和AU之间界面的电子结构如何受X射线,近红外(NIR)和紫外线(UV)光的照射的影响。可以通过使用低剂量X射线光电子光谱(XPS)来区分X射线和光线暴露的影响。除了金属铅(PB 0)的常见降解产物外,在暴露于高强度X射线或紫外线后,在PB 4F XPS光谱中鉴定出了新的中间分量(PB INT)。pb int分量被确定为单层金属Pb,是由钙钛矿结构破裂引起的pb诱导的pb的无电位沉积(upd)的单层金属Pb,允许PB 2+迁移。
钛基磷酸钾(KTIOPO 4),通常称为KTP,以其在量子和光学技术中的应用而闻名。这项研究的重点是采用水热和共沉淀方法的KTP纳米晶体的合成,采用草酸作为封盖剂。X射线粉末衍射(XRD)分析证实了正骨KTP晶体的成功合成。傅立叶变换红外(FT-IR)光谱进一步验证了KTP内的键结构,其特征带对应于其在所有光谱中始终观察到的晶体结构。定量分析表明,水热方法产生的KTP纳米颗粒的平均晶粒大小约为35 nm,而共沉淀方法产生的较小的纳米颗粒,平均晶粒尺寸为22 nm。值得注意的是,在水热法中将草酸作为封盖剂的引入将晶粒尺寸降低15%至约30 nm,而在共沉淀法中,它意外地将晶粒尺寸增加了20%,导致纳米颗粒的平均晶粒尺寸为26 nm。此外,与通过热液方法合成的样品(约0.5%)相比,在共同沉淀的样品中发现晶格内的应变更高(约0.8%)。这些发现强调了合成方法和封盖剂对KTP纳米颗粒的大小,形态和结构完整性的重要影响。这种见解对于优化针对光学设备,光子学和量子技术的各种应用量身定制的KTP纳米颗粒的合成至关重要。水热方法显示出在产生较大纳米颗粒的功效,而草酸作为涂料剂的存在在控制晶粒尺寸和增强结构稳定性方面起着关键作用。
任务是解释一组与化学相关的问题,涉及晶体结构,包装因子,配位数,密度和晶格参数。1)对于以面部为中心的立方金属,通过考虑球的体积(原子)来得出并计算包装因子。回想一下,半径为“ r”的球体的体积由(4/3)πr³给出。2)NaCl和CSCL都是以面部为中心的立方结构。确定NaCl中Na和NaCl中CL的配位数,考虑到其离子半径:116 pm钠的钠和氯化物的167 pm。3)使用其公式的重量(58.44 g/mol)和晶格常数(5.640Å)来计算NaCl的密度。4)确定以人体中心结构的钨的配位数,因为其共价半径(单键)为137 pm。5)使用公式:ρ=(n×m) /(a³×n_a)6)基于其晶体结构和原子质量(183.84 g / mol)来计算钨的密度,鉴于tantalum的边缘长度为0.330 nm,从该信息中计算出该信息,并在该信息中计算出tantalum的边缘长度。7)黄金的晶体结构是以面部为中心的立方体,密度为19.3 g/cm³。使用它来确定其晶格常数(a)。8)计算银的面部中心立方单元的边缘长度,因为其半径为9.09 x 10^-11 m,密度为10.5 g/cm³。9)polonium采用简单的立方结构,而其他则是离子的。在PM中确定其单位电池边缘的长度。13)石墨烯是由常规的SP²杂交碳原子建造的二维晶格。10)如果氧化镁具有面部为中心的立方结构,其原子半径为mg(65 pm)和O(140 pm),密度为3.58 g/cm³,则计算其晶格常数(a)。11)鉴于氟化钙CAF2具有FCC Bravais晶格,并且在分数坐标处的Origin和F的CA基础上,绘制了该结构的一个常规立方单元。12)确定晶格常数为5.451Å,确定从Ca原子到A埃原子的距离。确定其Bravais晶格并绘制Wigner-Seitz原始单位单元。14)计算石墨烯中最近的邻居原子之间的距离,该原子给出为0.14 nm。15)编写基础向量,以描述石墨烯单位单元中原子的位置,首先是在绝对位置(具有X和Y-Components和Angstroms中的距离),然后在分数坐标中。应使用常规晶格向量表示分数坐标的原子位置,该量子与原始晶格向量相吻合。对于带有空间群227的晶体,通过考虑以下几个方面来确定其点组和Bravais晶格:首先,根据空间组允许的对称操作确定点组;其次,根据空间群是否与原始晶格或非主要晶格兼容,建立原始或居中的Bravais晶格的类型。
区域(2.5-25 毫米)。这将有助于实现适当的光谱选择性(a/e),这是评价 SSA 组成材料的参数。4 第二个要求是它的工作温度。事实上,目前 SSA 的最大工作温度限制在 600 1 C,因为超过此温度其组件就会退化。5 这严重限制了 CSP 对太阳辐射光热转换的充分利用。更高的工作温度(通常为 900 1 C )将提高发电系统的热电转换效率,而该效率受卡诺效率的限制;Zc=1Tc/Th,其中 Th 是工作温度,Tc 是环境温度6,6 从而提高了 SSA 的效率。碳化硅 (SiC) 为高温应用提供了独特的特性,可与其他 CSP 系统的工作条件兼容。 7 它重量轻,导热系数高,抗热震性能优良,强度高,氧化时能形成钝化氧化层,具有抗氧化性能,热稳定性可达B 1400 1 C。7-9