摘要:准晶体 (QC) 于 1984 年首次发现,通常不表现出长程磁序。本文,我们报告了真实的二十面体准晶体 ( i QC) Au − Ga − Gd 和 Au − Ga − Tb 中的长程磁序。Au 65 Ga 20 Gd 15 i QC 在 TC = 23 K 时表现出铁磁转变,表现为磁化率和比热测量中的急剧异常,同时在 TC 以下出现磁布拉格峰。这是首次在真实的准晶体中观察到长程磁序,与迄今为止发现的其他磁性准晶体中观察到的自旋玻璃状行为形成对比。此外,当用 Tb 取代 Gd 时,即对于 Au 65 Ga 20 Tb 15 i QC,在 TC = 16 K 时仍然保留铁磁行为。虽然在 Au 65 Ga 20 Gd 15 i QC 中观察到的比热异常的尖锐异常在 Tb 取代后变得更宽,但中子衍射实验清楚地显示在 TC 下方明显出现了磁布拉格峰,这表明 Au 65 Ga 20 Tb 15 i QC 也存在长程磁序。我们的发现有助于进一步研究在具有前所未有的最高全局对称性即二十面体对称性的真实准周期晶格上形成的奇异磁序。■ 引言
其中 P m 和 P r 分别为最大和剩余极化。虽然传统电容器的电压在放电时线性下降,但表现出极化跳跃的强非线性电容器可以保持其电压。这一特性可以简化从电容器提供恒定电压所需的电子设备。此外,反铁电体可以比线性电介质和铁电体更有效地以高密度存储能量。含铅反铁电体的性能尤其高,12-14 例如 (Pb,La)(Zr,Ti)O 3 (PLZT) 化合物,它已在直流链路电容器中得到商业应用。此外,广泛的研究已使无铅替代品的电存储性能得到显着改善。15-18 通过将这些反铁电体改性为弛豫剂,还可以实现超高能量存储。19-22
下一代高亮度 X 射线光子源需要新的 X 射线光学器件。我们在此展示了在尖端高重复率 X 射线自由电子激光 (XFEL) 设备中使用单片金刚石通道切割晶体作为高热负荷光束复用窄带机械稳定 X 射线单色仪的可能性,该单色仪具有高功率 X 射线光束。这些研究中制造和表征的金刚石通道切割晶体设计为双反射布拉格反射单色仪,分别将 15 meV 带宽内的 14.4 或 12.4 keV X 射线引导至 57 Fe 或 45 Sc 核共振散射实验。晶体设计允许带外 X 射线以最小的损失传输到其他同时进行的实验中。入射的 100 W X 射线束中只有不到 2% 被 50 m 厚的第一块金刚石晶体反射器吸收,从而确保单色器晶体高度稳定。预计金刚石槽切割晶体将用于其他 X 射线光学应用。
尽管铯铅卤化钙钛矿 (CsPbX 3 ,X = Cl、Br 或 I) 纳米晶体 (PNC) 因其出色的光学和传输特性而迅速发展用于多种光电应用,但它们的结构稳定性低,尤其是在环境条件下,限制了它们的设备制造和商业化。在这项工作中,我们开发了一种新方法来保护这些纳米晶体的表面,从而提高了化学稳定性和光学性能。该方法基于将 CsPbX 3 NC 封装到具有内在微孔的聚酰亚胺 (PIM-PI) 中,4,4 ′-(六氟异丙基亚甲基)二邻苯二甲酸酐与 2,4,6-三甲基-间苯二胺 (6FDA- TrMPD) 发生反应。 6FDA-TrMPD 作为保护层可以有效地将 NC 与空气环境隔离,从而提高其光学和光致发光稳定性。更具体地说,比较用聚合物处理的 NC 与 168 小时后的合成纳米晶体,我们观察到聚合物处理前后 NC 的 PL 强度分别下降了 70% 和 20%。此外,含有聚合物的 PNC 薄膜比合成的纳米晶体显示出更长的激发态寿命,表明处理过的 PNC 中的表面陷阱态显著降低。化学和空气稳定性以及光学行为的增强将进一步提高 CsPbBr 3 PNC 的性能,从而产生有前景的光学器件并为其大规模生产和实施铺平道路。
材料科学中高级计算机模拟的时代为(纳米 - )材料性能设计了硅计算实验中的巨大潜力。可以通过原子模型和计算机模拟来揭示各种环境中纳米颗粒的吸附效率。砷(AS)是重要的全球分布污染物之一,对人类健康和环境有危险的影响,它可以根据其形状和大小与铁纳米晶体(例如,赤铁矿(Fe 2 O 3))强烈结合。在这里,我们开发了一种新型的动力学蒙特卡洛(KMC)模型,该模型能够探索和描述Fe 2 O 3纳米晶体的形状效率依赖性,并与砷酸盐污染的水接触。这个新设计的模型证明了纳米晶体在其表面上去除有毒(AS)的性能。当前的模型为在不同的环境相关情况(例如地下水,湿地和水处理系统)下,开辟了新的途径,用于设计用于纳米颗粒的进一步高级KMC模型。除了在介绍的模型中实现的双齿吸附复合物外,还应将单次和外部吸附复合物纳入KMC模型。可以通过实现pH和背景离子来解决详细的环境控制。
零维 (0-D) 卤化铅钙钛矿纳米晶体 (NC) 因其优异的性能,例如高光致发光量子产率 (PLQY) 以及尺寸和成分控制的可调发射波长,在光电器件领域引起了人们的广泛兴趣。然而,铅钙钛矿 NC 中铅 (Pb) 元素的毒性是钙钛矿 NC 商业化应用的瓶颈。在此,我们报道了一种简便的配体辅助合成方法,实现了无铅 Cs 3 Cu 2 Cl 5 NC,其 PLQY 高达 ∼ 70% 并且对环境氧气/水分具有良好的稳定性,是一种很有前途的下转换材料。它具有高 PLQY 和大斯托克斯位移(∼ 300 nm)的优点,这源于 Jahn-Teller 畸变和自陷激子 (STE) 的影响。此外,Cs 3 Cu 2 Cl 5 NCs 嵌入复合膜 (NCCF) 被用于增强硅 (Si) 光电探测器的紫外线 (UV) 响应。外部量子效率 (EQE) 测量表明,基于 NCCF 与 Si 光电二极管的结合,紫外线响应可从 3.3% 大幅提高至 19.9% @ 295 nm。我们的工作提供了一种有效的方法来开发高效、稳定的无铅 Cs 3 Cu 2 Cl 5 NCs,用于太阳盲紫外线光电探测器。
摘要:半导体纳米晶体中的载体旋转是量子信息处理的有前途的候选者。使用时间分辨的法拉第旋转和光致发光光谱的组合,我们证明了胶体CSPBBR 3纳米晶体中的光学自旋极化和相干自旋进液,这些纳米晶体一直持续到室温。通过抑制具有少量施加的磁场的不均匀性高纤维的影响,我们证明了接近纳米晶光发光生命周期的不均匀孔横向旋转旋转时间(T 2 *),从而几乎所有发射的光子都来自colent colehent colent colent colent spins spins spins spins。热激活的LO声子在升高温度下驱动额外的自旋去向,但在室温下仍观察到连贯的自旋进动。这些数据揭示了纳米晶和散装CSPBBR 3中的自旋之间的几个主要区别,并为在基于自旋的量子技术中使用金属 - 甲基钙钛矿纳米晶体打开了门。关键字:钙钛矿纳米晶体,旋转dephasing,t 2 *,时间分辨的法拉第旋转,旋转式,量子信息
纳米颗粒组件经过严格的调查,因为诸如催化,电池和生物医学等领域内的众多应用。在这里,据报道,据报道,据报道,据报道,据报道,据报道,在加工棉纤维细胞壁的模板(即CNC的天然起源)的模板中,定向类似杆状的,生物衍生的纤维素纳米晶体(CNC)。是一个系统,将组件同时在固态中与CNC的自上而下形成通过HCL蒸气同时进行。在水解后,纤维素微纤维纤维分解为CNC,然后堆积在一起,从而减少了原始纤维的孔径分布。通过n 2吸附,吸水,热值和小角度的X射线散射来证明密集的填料,并假设分配给CNC之间有吸引力的范德华相互作用。
非线性光子晶体是具有二次非线性(χ(2))的微结构,它们已广泛用于新频率下相干光的生成和控制。由于最近使用飞秒激光脉冲的3Dχ(2) - 非线性工程技术的发明,现已在实验上是可行的。在这里,我们回顾了非线性光子晶体的最新研究进展,尤其集中在3D结构的制造,表征和应用上。我们还讨论了3D非线性光子晶体的未来发展,其性质和功能是很难或几乎无法通过较低的尺寸结构实现的。©2021美国光学协会根据OSA开放访问出版协议的条款
摘要:纤维素纳米材料是近年来最相关的科学技术发现之一。纤维素纳米晶体 (CNC) 在其中脱颖而出,因为它们具有非凡的化学、机械、热和光学特性,使其成为从地球上最丰富的生物聚合物制造先进材料的有趣替代品。本文对近年来发表的文献进行了批判性分析,强调了在寻找更环保的方法过程中出现的各种获取过程。其中包括从各种来源(非食用生物质和农业工业废物)提取 CNC 所使用的工艺的比较表,表明了该工艺的有效性以及这种可持续先进生物纳米材料的特性和应用。