精神病经历(PES)发生在5 - 10%的一般人群中,并且与儿童创伤和产科并发症有关。然而,这些关联下的神经生物学机制尚不清楚。使用了父母和孩子的雅芳纵向研究(ALSPAC),我们研究了138名20岁的年轻人(n = 49个怀疑,n = 53,定义,n = 36个精神病)和275个对照。Voxel-based morphometry assessed whether MRI measures of grey matter volume were associated with (i) PEs, (ii) cumulative childhood psychological trauma (weighted summary score of 6 trauma types), (iii) cumulative pre/peri-natal risk factors for psychosis (weighted summary score of 16 risk factors), and (iv) the interaction between PEs and cumulative trauma or pre/peri-natal risk.pes与较小的左后扣带回(p fwe <0.001,z = 4.19)和丘脑体积(p fwe = 0.006,z = 3.91)有关。累积前/围产期风险与较小的左下扣带回体积有关(P FWE <0.001,Z = 4.54)。A signi fi cant interaction between PEs and cumulative pre/perinatal risk found larger striatum ( p FWE = 0.04, Z = 3.89) and smaller right insula volume extending into the supramarginal gyrus and superior temporal gyrus ( p FWE = 0.002, Z = 4.79), speci fi cally in those with de fi nite PEs and psychotic disorder.累积的儿童创伤与较大的左背纹状体(P FWE = 0.002,Z = 3.65),右前额叶皮层(P FWE <0.001,Z = 4.63)和所有参与者中较小的左岛体积相关(P FWE = 0.03,Z = 3.60),并且与PES组无关。总而言之,预/周期的危险因素和儿童心理创伤会影响相似的大脑通路,即较小的岛状和较大的纹状体体积。在患有更严重的PE的患者中,前/围产期风险的影响最大,而在所有参与者中都看到创伤的影响。总而言之,环境风险因素会影响与精神分裂症有关的大脑网络,这可能会增加个人发展以后精神病的倾向。
目的:最近有研究表明阿尔茨海默病 (AD) 会出现皮质铁沉积。在本研究中,我们旨在评估使用定量磁敏感度映射 (QSM) 测量的皮质灰质铁在临床认知障碍谱中的差异。材料和方法:这项回顾性研究评估了 73 名认知正常 (NC) 的参与者(平均年龄±标准差,66.7±7.6 岁;52 名女性和 21 名男性)、158 名轻度认知障碍 (MCI) 患者和 48 名 AD 痴呆患者。参与者在 3-T 扫描仪上使用三维多动态多回波序列进行脑磁共振成像。我们采用了深度神经网络 (QSMnet+) 并使用基于 FreeSurfer v6.0 的自动分割软件来提取皮质中的解剖标签和感兴趣的体积。我们使用协方差分析来研究每个大脑区域临床诊断组之间的磁敏感度差异。采用多元线性回归分析研究敏感性值与简易精神状态检查表(MMSE)等认知评分之间的相关性。结果:三组中,MCI 合并 AD 患者的额叶(P < 0.001)、颞叶(P = 0.004)、顶叶(P = 0.001)、枕叶(P < 0.001)和扣带皮层(P < 0.001)的平均敏感性高于 NC 患者。在 MCI 合并 AD 组中,在校正年龄、性别、受教育程度、区域体积和 APOE4 携带者状态后,扣带皮层(β = -216.21,P = 0.019)和岛叶皮层(β = -276.65,P = 0.001)的平均敏感性是 MMSE 评分的独立预测因子。结论:通过 QSMnet+ 测量,AD 和 MCI 患者的皮质铁沉积高于 NC 参与者。扣带回和岛叶皮质中的铁沉积可能是认知障碍相关神经变性的早期影像学标志。关键词:铁;定量评估;认知障碍;磁共振成像
摘要目的本研究旨在基于较高的寿命雌激素暴露与较低的心血管风险有关的假设,旨在检查寿命雌激素暴露与缺血性心脏病(IHD)之间的关联。方法在2004 - 2008年,使用生殖寿命(RLS),内源性雌激素暴露(EEE)(EEE)和总雌激素暴露(TEE),评估了中国Kadoorie Biobank的绝经后女性中生殖因素的寿命累积暴露。EEE是通过减去RLS的妊娠相关和避孕持续时间来计算的,而Tee则通过添加相同的成分,除了哺乳外。在随访期间(2004- 2015年)中事件IHD。 分层的COX比例危害模型估计RLS,EEE和TEE的IHD的HR和95%CIS。 在118 855个绝经后女性中的结果,13 162(11.1%)在中位数为8。9年期间发展了IHD。 The IHD incidence rates were 13.0, 12.1, 12.5, 13.8 per 1000 person-years for RLS Q1–Q4, 15.8, 12.6, 11.3, 12.1 per 1000 person-years for EEE Q1–Q4 and 13.7, 12.3, 12.2, 13.4 per 1000 person-years for TEE Q1–Q4. RLS和TEE的最高四分位数(Q4)与IHD的风险较低(调整后的HR(AHR)0.95,95%CI 0.91至1.00和0.92,95%CI 0.88至0.97,相比之下,与最低的四分之一(Q1)相比。 更长的EEE显示出逐渐降低事件IHD的风险(AHR 0.93,95%CI 0.88至0.97; 0.88,95%CI 0.84至0.93; 0.87,95%CI 0.83至0.92 for Q2 – Q4 vs Q1)。 结论更长的RLS,TEE和EEE与中国绝经后女性的IHD风险较低有关。在随访期间(2004- 2015年)中事件IHD。分层的COX比例危害模型估计RLS,EEE和TEE的IHD的HR和95%CIS。在118 855个绝经后女性中的结果,13 162(11.1%)在中位数为8。9年期间发展了IHD。The IHD incidence rates were 13.0, 12.1, 12.5, 13.8 per 1000 person-years for RLS Q1–Q4, 15.8, 12.6, 11.3, 12.1 per 1000 person-years for EEE Q1–Q4 and 13.7, 12.3, 12.2, 13.4 per 1000 person-years for TEE Q1–Q4.RLS和TEE的最高四分位数(Q4)与IHD的风险较低(调整后的HR(AHR)0.95,95%CI 0.91至1.00和0.92,95%CI 0.88至0.97,相比之下,与最低的四分之一(Q1)相比。更长的EEE显示出逐渐降低事件IHD的风险(AHR 0.93,95%CI 0.88至0.97; 0.88,95%CI 0.84至0.93; 0.87,95%CI 0.83至0.92 for Q2 – Q4 vs Q1)。结论更长的RLS,TEE和EEE与中国绝经后女性的IHD风险较低有关。
摘要 宏基因组学研究通过超越公共卫生或经济利益宿主来发现许多新型病毒。然而,得到的病毒基因组往往不完整,而且分析主要表征了病毒在其动态中的分布。在这里,我们整合了从宏基因组学研究中积累的数据,以揭示正粘病毒科(包括流感病毒在内的 RNA 病毒家族)案例研究的地理和进化动态。首先,我们使用正粘病毒科武汉蚊病毒 6 的序列来追踪其宿主的迁移。然后,我们研究正粘病毒基因组的进化,发现该家族成员之间的基因获得和丢失,特别是负责细胞和宿主向性的表面蛋白。我们发现武汉蚊病毒 6 的表面蛋白表现出加速的非同义进化,暗示抗原进化,即脊椎动物感染,并且属于具有高度分化的表面蛋白的更广泛的 quaranjavirid 组。最后,我们量化了正粘病毒的发现进展,并预测仍有许多不同的正粘病毒科成员有待发现。我们认为,无论是否发现新病毒,只要研究设计能够解析完整的病毒基因组,持续的宏基因组研究将对了解病毒及其宿主的动态、进化、生态学大有裨益。
用六甲硅烷基处理的细胞已显示出某些细胞表面损伤,而不管真菌培养中使用的金属如何。尽管这可能是由于干燥过程引起的,这也会导致微胶囊的丢失(图5A-D)。 在此干燥过程中,处理的细胞在其拓扑结构没有变化。 仅在下部电子检测器(LED)进行PB处理时,揭示了非典型的三维泄漏(图。 5b)。 随后,在用Pb处理后,Cu和Zn可以在细胞表面观察到一些絮状物(图 5b-d)。 否则,从图。 E-P图的 5,观察到酵母菌保持其微胶囊,样品通过临界点过程(CPD)干燥。 微胶囊的方面是包围整个单元的薄层。 此外,此层5A-D)。在此干燥过程中,处理的细胞在其拓扑结构没有变化。仅在下部电子检测器(LED)进行PB处理时,揭示了非典型的三维泄漏(图。5b)。随后,在用Pb处理后,Cu和Zn可以在细胞表面观察到一些絮状物(图5b-d)。否则,从图。5,观察到酵母菌保持其微胶囊,样品通过临界点过程(CPD)干燥。微胶囊的方面是包围整个单元的薄层。此外,此层
1 Department of Genetics, Eötvös Lor á nd University, P á zm á ny P é ter s é t á ny 1/C, 1117 Budapest, Hungary 2 Genetics Research Group, Eötvös Lor á nd Research Network-Eötvös Lor á nd University, 1117 Budapest, Hungary 3 Momentum Ion Mobility Mass Spectrometry Research匈牙利科学学院-EötvösLoránd University,1117 Budapest,匈牙利4分子生物学与生物技术研究所,研究与技术 - 赫拉斯基金会,P.O。Box 1385 Heraklion,Heraklion,Greece 5有机化学系,EötvösLorándUniversity,1117 Budapest,Hungary 6 Vellab Biotech Ltd.,6722 Szeged,匈牙利 *通信 *通讯:adam.sturm@sturm@turm@turm@ttk.elte.elte.elte.elte.elte.hu(/div)。 ); vellai.tibor@ttk.elte.hu(T.V. );电话。 : +36-1-372-2500(Ext。 8684)(T.V. );传真: +36-1-372-2641(T.V.) †这些作者为这项工作做出了同样的贡献。Box 1385 Heraklion,Heraklion,Greece 5有机化学系,EötvösLorándUniversity,1117 Budapest,Hungary 6 Vellab Biotech Ltd.,6722 Szeged,匈牙利 *通信 *通讯:adam.sturm@sturm@turm@turm@ttk.elte.elte.elte.elte.elte.hu(/div)。); vellai.tibor@ttk.elte.hu(T.V.);电话。: +36-1-372-2500(Ext。8684)(T.V.);传真: +36-1-372-2641(T.V.)†这些作者为这项工作做出了同样的贡献。
1 Department of Genetics, Eötvös Lor á nd University, P á zm á ny P é ter s é t á ny 1/C, 1117 Budapest, Hungary 2 Genetics Research Group, Eötvös Lor á nd Research Network-Eötvös Lor á nd University, 1117 Budapest, Hungary 3 Momentum Ion Mobility Mass Spectrometry Research匈牙利科学学院-EötvösLoránd University,1117 Budapest,匈牙利4分子生物学与生物技术研究所,研究与技术 - 赫拉斯基金会,P.O。Box 1385 Heraklion,Heraklion,Greece 5有机化学系,EötvösLorándUniversity,1117 Budapest,Hungary 6 Vellab Biotech Ltd.,6722 Szeged,匈牙利 *通信 *通讯:adam.sturm@sturm@turm@turm@ttk.elte.elte.elte.elte.elte.hu(/div)。 ); vellai.tibor@ttk.elte.hu(T.V. );电话。 : +36-1-372-2500(Ext。 8684)(T.V. );传真: +36-1-372-2641(T.V.) †这些作者为这项工作做出了同样的贡献。Box 1385 Heraklion,Heraklion,Greece 5有机化学系,EötvösLorándUniversity,1117 Budapest,Hungary 6 Vellab Biotech Ltd.,6722 Szeged,匈牙利 *通信 *通讯:adam.sturm@sturm@turm@turm@ttk.elte.elte.elte.elte.elte.hu(/div)。); vellai.tibor@ttk.elte.hu(T.V.);电话。: +36-1-372-2500(Ext。8684)(T.V.);传真: +36-1-372-2641(T.V.)†这些作者为这项工作做出了同样的贡献。
Pamela C. L Ferraira 1,Joseph Therriault ,Wagner S. Brum 4.5,6,Firoza Z笨拙1,奥斯卡5,13,15,15,16,Blennow Blennow 5,6,Serge Gauthier2实验室神经影像学翻译,仅是ouest的通用情报与社会服务(CIUSSS)加拿大QC蒙特利尔神经病学系。4生物科学的物质计划。5 5 5 5 5 5瑞典瑞典神经化学系。6临床神经化学实验室。7门诊计划与开发计划计划医院,全球港口,RS,巴西。14英国UCL英国痴呆症研究所,英国伦敦。14英国UCL英国痴呆症研究所,英国伦敦。8联邦大学药理学系Rio Grande Do Sul,巴西RS Porto Alegre。 9生物科学研究生课程:药理学和治疗性,联邦大学里奥·格兰德·杜尔(Rio Grande Do) 10瑞典哥德堡Sahlgrenska大学医院的临床神经化学实验室。 11 Wallenberg分子与转化医学中心,瑞典哥德堡大学,哥德堡大学。 12年老年精神病学系,心理学与神经科学研究所,英国伦敦伦敦国王学院。 13英国伦敦UCL女王神经病学研究所神经退行性疾病系。 15香港神经退行性疾病中心,中国香港。 16威斯康星州阿尔茨海默氏病研究中心,威斯康星大学医学与公共卫生学院,威斯康星大学麦迪逊分校,美国威斯康星州麦迪逊大学,美国威斯康星州麦迪逊市17,美国匹兹堡大学医学院,美国宾夕法尼亚州匹兹堡大学医学院。8联邦大学药理学系Rio Grande Do Sul,巴西RS Porto Alegre。9生物科学研究生课程:药理学和治疗性,联邦大学里奥·格兰德·杜尔(Rio Grande Do)10瑞典哥德堡Sahlgrenska大学医院的临床神经化学实验室。11 Wallenberg分子与转化医学中心,瑞典哥德堡大学,哥德堡大学。12年老年精神病学系,心理学与神经科学研究所,英国伦敦伦敦国王学院。 13英国伦敦UCL女王神经病学研究所神经退行性疾病系。 15香港神经退行性疾病中心,中国香港。 16威斯康星州阿尔茨海默氏病研究中心,威斯康星大学医学与公共卫生学院,威斯康星大学麦迪逊分校,美国威斯康星州麦迪逊大学,美国威斯康星州麦迪逊市17,美国匹兹堡大学医学院,美国宾夕法尼亚州匹兹堡大学医学院。12年老年精神病学系,心理学与神经科学研究所,英国伦敦伦敦国王学院。13英国伦敦UCL女王神经病学研究所神经退行性疾病系。 15香港神经退行性疾病中心,中国香港。 16威斯康星州阿尔茨海默氏病研究中心,威斯康星大学医学与公共卫生学院,威斯康星大学麦迪逊分校,美国威斯康星州麦迪逊大学,美国威斯康星州麦迪逊市17,美国匹兹堡大学医学院,美国宾夕法尼亚州匹兹堡大学医学院。13英国伦敦UCL女王神经病学研究所神经退行性疾病系。15香港神经退行性疾病中心,中国香港。16威斯康星州阿尔茨海默氏病研究中心,威斯康星大学医学与公共卫生学院,威斯康星大学麦迪逊分校,美国威斯康星州麦迪逊大学,美国威斯康星州麦迪逊市17,美国匹兹堡大学医学院,美国宾夕法尼亚州匹兹堡大学医学院。
红树林在隔离有机碳中的重要作用是众所周知的,但是宏观潮汐红树林生态系统中有机碳的积累速率却很差。在这里,我们使用210个PB的日期来预示着来自亚马逊宏观宏观红树林的沉积物中的碳,营养和痕量金属积累的125年记录。我们发现,有机碳积累的速率范围为23.7至74.7 g 2年1(平均38 13.5 g m 2年1),显着低于红树林的全球平均值。这些低速率可能与沉积物晶粒大小和沉积物 - 驱动有机物氧化并减少这些高度动态的宏观潮汐森林中的碳库存的水接口工艺有关。总氮积累范围为1.4至5.1 g m 2年1(平均2.7 0.9 g m 2年1),磷从1.5到8.4 g m 2年(平均4.3 1.9 1.9 g m 2年1)。Trace metal accumulation rates (As, Pb, Cr, Cu, Mn, Ni, Zn, Hg, Bo, V, Co, Mo, S, and Ba) were also lower than other tropical mangrove forests globally, but trace metal in more recent sediments for Mn, As, Cu, and Hg were elevated, likely re fl ecting human footprint in the region since early the 20 th century.精确量化红树林生态系统中的碳积累率的能力对于缓解气候变化策略和全球碳偏移方案的实施至关重要。
摘要 茶树(Camellia sinensis)广泛种植在酸性土壤中,铝(Al)毒性被认为是限制植物生长的主要因素。与大多数植物物种不同,茶树具有耐铝性并能积累高水平的铝。了解茶树耐铝性和积累的机制可能有助于改良茶树栽培和开发耐铝作物。在本综述中,我们总结了茶树对铝的吸收、运输和积累的最新进展,以及影响这些过程的遗传和环境因素。我们进一步重点介绍了基于组学方法对茶树铝的最新研究,包括转录组学、蛋白质组学、代谢组学、离子组学和微生物组学。我们提出了未来研究的前景,这将有助于阐明茶树耐铝性和积累的机制。