过去,由于糖尿病造成的肾功能障碍主要是蛋白尿之前首先发生的疾病,然后随后降低了EGFR(1,2)。最近,已经观察到没有明显蛋白尿的肾小球效果率(GFR)降低。因此,糖尿病肾病的概念已被认为是糖尿病性肾病的伞概念(1,2)。近年来,已经报道了SGLT2抑制剂和GLP-1受体激动剂的肾脏预后改善,并且在临床实践中实际上感觉到这些药物的作用(3),但DKD的发病机理仍然很大程度上仍然没有探索。最近,近端肾小管细胞在糖尿病肾脏病发病机理中的作用一直是研究的重点(4)。糖尿病性肾小球肾病主要是肾小球损伤。相比之下,糖尿病肾脏疾病不仅涉及肾肾小球肾病,而且还涉及肾小球纤维化。基于肾脏活检样本的解剖区域,糖尿病肾脏疾病可以分为肾小球糖尿病肾脏疾病和管状糖尿病性肾脏疾病。肾小球糖尿病肾病的共同特征涉及受损的肾小球滤过屏障,肾小球细胞增殖和肾小球骨膜硬化。管状糖尿病性肾脏疾病的主要表现包括肾小管重吸收和分泌的功能障碍以及肾小管纤维化(4)。此外,近端管状损伤在患有/没有蛋白尿的糖尿病肾脏疾病的进展中具有重要作用(2,4)。糖尿病肾脏疾病中肾小球和微管间质损伤的机制不同,但是相关途径和介体的相互作用很多。因此,在此卷中,一些论文集中在肾小管上皮细胞上。纤毛是一种基于微管的细胞器,它是从大多数脊椎动物细胞类型的表面投射,并检测和传输细胞外信号(5)。睫状生命周期也与细胞周期密切相关。肾纤毛是
糖尿病微血管并发症的特征在于由于糖尿病(DM)患者的慢性持续性高血糖状态而导致小血管或神经的损害,表现为异常结构和相应靶向器官功能的功能变化,最终(1-3)。It is known that diabetic kidney disease (DKD), diabetic retinopathy (DR), and diabetic neuropathy (DNP) are three major diabetic chronic microvascular complications that need to be screened comprehensively upon diagnosis of type 2 diabetes (T2D) and type 1 diabetes (T1D) in the fi fth year and even at least annually thereafter because of the characteristics of阴险的发作和不可逆转的进展,导致了巨大的经济负担,并延长了潜在的身体和精神痛苦(4,5)。尽管有大量的新型治疗方法,但DM的发病率和流行率仍在增加,并显示出受影响的年轻一代的趋势,这导致相应的微血管并发症显然上升(6-8)。大量微生物富集在胃肠道,这是人体中最大的微生物栖息地。同时,这些微生物群存在于健康调节目的的动态平衡状态(9)。肠道微生物群(GM)的组成和代谢在DM及其并发症中起重要作用(10,11),受饮食(12),人口统计学(13)和药物使用等多种因素的影响(14)。尽管如此,由致病机械相互作用或仅仅是相关性驱动的GM与糖尿病微血管并发症之间的联系尚不清楚。最近的研究集中在GM和DM之间的关联及其微血管并发症,尤其是提出了“肠道 - 肾脏轴”理论(15),“肠道 - 视网膜轴”(16),“肠道 - 脑轴”(17)和“肠道 - 肠道 - 周围神经轴”(18)。因此,专注于益生菌,益生元,合成生或什至粪便微生物移植的GM调节可能是DM和随后的微血管并发症的有希望的突破方向。Mendelian随机化(MR)是一种互补的统计方法,它利用与诸如仪器变量(IVS)等暴露因子相关的遗传变异来暗示
众所周知,2型糖尿病是一种因胰岛素相对或绝对缺乏而导致血糖升高的严重慢性疾病,被认为是内分泌代谢紊乱的重要组成部分(1,2)。国际糖尿病联盟(IDF)发布的《2021年糖尿病图谱》显示,到2030年糖尿病患者数量将达到6.43亿,预计到2045年将上升到惊人的7.83亿,全球与糖尿病相关的医疗保健支出可能超过1.05万亿美元(3,4)。2021年全球疾病负担研究表明,截至2021年,糖尿病已成为个人死亡和残疾的第八大风险因素(5)。事实上,大量研究糖尿病相关死亡原因的研究表明,大多数 2 型糖尿病患者至少患有一种合并症全身并发症,包括神经病变、肾病、视网膜病变,尤其是心血管损害,这是糖尿病患者死亡的主要原因(6、7)。研究表明,越来越多的 2 型糖尿病患者在年轻时(40 岁以下)被诊断出来,导致预期寿命缩短和寿命损失年数增加(8)。因此,美国糖尿病协会在其糖尿病护理标准中一直强调实施适当策略对预防和延缓糖尿病相关多系统并发症的重要性(9)。虽然葡萄糖代谢和脂质代谢是相对独立的代谢途径,但它们通过肾素-血管紧张素-醛固酮系统、线粒体功能、氧化应激和炎症反应错综复杂地相互联系。这些被破坏的分子和细胞机制共同导致了糖尿病和动脉粥样硬化的发展(10)。随着全球代谢性心血管疾病负担的不断加重,越来越多的研究强调,需要采取关键的预防和治疗干预措施,以减轻代谢因素对心血管健康的影响(11)。周围神经病变是糖尿病患者中最常见、最复杂、最严重的并发症之一,显著增加了溃疡、非创伤性截肢和足部感染的风险,可能导致长期残疾,并给 2 型糖尿病患者带来巨大的经济和心理负担(12)。此外,一项在亚洲人群中进行的观察性研究显示,2 型糖尿病患者中 2 型糖尿病肾病(DKD)的患病率高达
摘要AMPK促进分解代谢并抑制合成代谢的细胞代谢,以在能量应激期间促进细胞存活,部分通过抑制MTORC1,这是一种合成代谢激酶,需要足够水平的氨基酸。我们发现缺乏AMPK的细胞显示出在氨基酸剥夺长期导致的营养应激期间凋亡细胞死亡增加。我们假定自噬受损解释了这种表型,因为一种普遍的观点认为AMPK通过ULK1的磷酸化启动了自噬(通常是亲生响应)。出乎意料的是,在缺乏AMPK的细胞中,自噬仍然没有受损,正如多个细胞系中的几个自噬读数所监测的那样。更令人惊讶的是,在氨基酸剥夺期间,不存在AMPK的ULK1信号传导和LC3B脂质增加,而AMPK介导的ULK1 S555的磷酸化(拟议启动自噬的站点)在氨基酸戒断或药理学MTORC1抑制后降低了ULK1 S555(拟议启动自噬)的磷酸化。此外,用化合物991,葡萄糖剥夺或氨基酸戒断引起的AICAR钝化自噬的AMPK激活。这些结果表明AMPK激活和葡萄糖剥夺抑制自噬。作为AMPK控制的自噬在意外方向上,我们检查了AMPK如何控制MTORC1信号传导。矛盾的是,我们观察到在长时间氨基酸剥夺后缺乏AMPK的细胞中MTORC1的重新激活受损。这些结果共同反对既定的观点,即AMPK促进自噬并普遍抑制MTORC1。这些发现促使对AMPK及其对自噬和MTORC1的控制如何影响健康和疾病进行了重新评估。此外,在延长氨基酸剥夺的背景下,它们揭示了AMPK在抑制自噬和MTORC1信号传导中的意外作用。关键字:mtor; S6K1; 4EBP1; lc3b; ULK1; ATG16L1;化合物991;葡萄糖剥夺; aicar;细胞存活缩写:AAS:氨基酸; ADP:双磷酸腺苷; AICAR:5-氨基咪唑-4-羧酰胺核糖核苷酸; AMP:单磷酸腺苷; AMPK:AMP激活的蛋白激酶; ATG14:自噬相关14; ATG16L1:自噬相关16,如1; ATG5:自噬相关5; BAFA1:Bafilomycin A1; DKD:双重击倒; DKO:双淘汰赛; ECL:增强的化学发光; LC3B:微管相关蛋白1A/1B轻链3B; MEF:小鼠胚胎成纤维细胞; MTORC1:雷帕霉素复合物1的机械靶标; MTORC2:雷帕霉素复合物2的机械靶标; p62:泛素结合蛋白p62,又名SQSTM1/secestosoms 1; S6K1核糖体蛋白S6激酶1; 4EBP1,EIF4E [真核起始因子4E]结合蛋白1; TEM:透射电子显微镜; ULK1:UNC-51样激酶1; VPS34,液泡蛋白排序34。