- “心律失常检测” - “心电图心律失常” - “室性心律失常” - “室上性心律失常” - “早搏” - “心脏传导阻滞” - “心动过缓” - “心动过速” - “12 导联心电图” - “心脏信号处理” - “心电图中的深度学习” - “CNN” - “DNN” - “LSTM” - “Transformers” - “混合模型”
参数偏微分方程 (PDE) 的最优控制在工程和科学领域的许多应用中都至关重要。近年来,科学机器学习的进步为参数偏微分方程的控制开辟了新的领域。特别是,深度强化学习 (DRL) 有可能在各种应用中解决高维和复杂的控制问题。大多数 DRL 方法依赖于深度神经网络 (DNN) 控制策略。然而,对于许多动态系统,基于 DNN 的控制策略往往过度参数化,这意味着它们需要大量的训练数据、表现出有限的鲁棒性并且缺乏可解释性。在这项工作中,我们利用字典学习和可微分 L 0 正则化来学习参数偏微分方程的稀疏、鲁棒和可解释的控制策略。我们的稀疏策略架构与 DRL 方法无关,可以在不同的策略梯度和参与者-评论家 DRL 算法中使用,而无需改变其策略优化程序。我们在控制参数化 Kuramoto-Sivashinsky 和对流-扩散-反应 PDE 的挑战性任务上测试了我们的方法。我们表明,我们的方法 (1) 优于基于 DNN 的基准 DRL 策略,(2) 允许推导所学最优控制律的可解释方程,以及 (3) 推广到 PDE 的未知参数而无需重新训练策略。
在过去的十年中,人工智能 (AI) 领域取得了广泛的发展。现代放射肿瘤学基于对先进计算方法的利用,旨在实现个性化和高诊断和治疗精度。可用成像数据的数量和机器学习 (ML),特别是深度学习 (DL) 的不断发展,引发了从解剖和功能医学图像中发现“隐藏”生物标志物和定量特征的研究。深度神经网络 (DNN) 在图像处理任务中取得了出色的性能并得到了广泛的应用。最近,DNN 已被考虑用于放射组学,它们在可解释人工智能 (XAI) 方面的潜力可能有助于临床实践中的分类和预测。然而,它们中的大多数都使用有限的数据集并且缺乏普遍适用性。在本研究中,我们回顾了放射组学特征提取的基础知识、图像分析中的 DNN 以及有助于实现可解释人工智能的主要可解释性方法。此外,我们讨论了多中心招募大型数据集的关键要求,增加了生物标志物的变异性,从而确定放射组学的潜在临床价值和开发强大的可解释人工智能模型。
自主驾驶系统(AD)被深度神经网络(DNN)增强,以感知环境,而DNN易受对抗性攻击的脆弱性使它们的安全性受到怀疑。其中,由于其最小的要求和物理世界中的高攻击成功率,激光攻击的多样性是一种新的威胁。尽管如此,当前的防御方法表现出较低的防御成功率或针对激光攻击的高计算成本。为了填补这一空白,我们提出了激光屏蔽层,该激光屏蔽层利用偏振器以及最小的旋转机制,以消除广告场景中的对抗激光器。我们还提供了一个物理世界数据集LAPA,以评估其性能。通过使用三个基线,四个指标和三个设置的详尽实验,激光屏蔽被证明超过了SOTA性能。
深度神经网络(DNN)一直处于机器学习(ML)和深度学习(DL)(DL)的最新突破的最前沿。dnns越来越多地用于各种任务,从对卫星图像的地球观察和分析到医学诊断和智能聊天机器人。在这些进步方面的主要贡献是培训数据,计算资源和框架的丰富性,可以在范式中有效地培训越来越多,更复杂的DNN,该范式被称为分布式DL,尤其是分布式培训,这是该博士学位的重点。在分布式培训中,数据和计算分布在几个工人中,而不是单主培训,其中数据和计算都驻留在单个工人上。在这种设置中,分布式培训可以帮助克服单主训练的局限性,例如内存限制,计算瓶颈和数据可用性。但是,分布式培训带来了许多需要仔细解决的挑战,以便具有有效利用它的系统。这些挑战包括但不限于工人中计算和数据的有效分布,Straggler工人在集群中的统计(与其他工人相比,在计算步骤中大大落后于工人),尤其是在同步执行的工作,以及工人之间的交流和同步。这意味着系统应在计算和数据维度上提供可伸缩性。另一方面,从编程和可用性的角度来看,使用分布式培训范式通常需要了解分布式计算原理和具有分布式和数据密集型计算框架的经验以及对单霍斯特培训使用的代码进行重大更改。此外,随着训练A DNN涉及几个步骤和阶段(例如,数据准备,超参数调整,模型培训等。),希望可以重复使用彼此不同步骤的计算结果(例如,在高参数调谐试验中学习的权重,以便改善训练时间,以便在高参数调整试验中学习的权重)。最后,当开发更大,更复杂的DNN时,我们还需要了解每个设计选择的贡献。本博士学位论文的贡献解决了上述挑战,并共同优化了大规模的DNN培训,使其更易于访问,高效和计算可持续性,同时又可以在ML/DL工作流中延长冗余,并为进行消水研究提供了有用的工具。
在核反应实验中,测量的衰变能谱可以洞悉衰变系统的壳结构。然而,由于探测器分辨率和接受效应,从测量中提取底层物理信息具有挑战性。Richardson-Lucy (RL) 算法是一种常用于光学的去模糊方法,已被证明是一种成功的图像恢复技术,该算法被应用于我们的实验核物理数据。该方法的唯一输入是观察到的能谱和探测器的响应矩阵(也称为传输矩阵)。我们证明该技术可以帮助从测量的衰变能谱中获取有关粒子非结合系统壳结构的信息,而这些信息无法通过卡方拟合等传统方法立即获取。出于类似的目的,我们开发了一个机器学习模型,该模型使用深度神经网络 (DNN) 分类器从测量的衰变能谱中识别共振状态。我们在模拟数据和实验测量中测试了这两种方法的性能。然后,我们将这两种算法应用于通过不变质谱测量的 26 O → 24 O + n + n 衰变能谱。使用 RL 算法对测量的衰变能谱进行去模糊处理后恢复的共振状态与 DNN 分类器发现的状态一致。去模糊处理和 DNN 方法均表明 26 O 的原始衰变能谱在约 0.15 MeV、1.50 MeV 和 5.00 MeV 处出现三个峰,半宽分别为 0.29 MeV、0.80 MeV 和 1.85 MeV。
摘要 - 基于机器学习的嵌入式系统,这些系统在安全 - 关键应用中(例如航空航天和自主驾驶)中所需的系统需要强大,以防止软错误产生的扰动。软误差是现代数字处理器越来越多的关注点,因为较小的晶体管几何形状和较低的电压使电子设备对背景辐射具有更高的敏感性。深神经网络(DNN)模型对参数扰动的弹性在很大程度上是通过模型本身的结构以及所选的数值表示并使用算术精确的。应用诸如模型修剪和模型量化之类的压缩技术来减少内存足迹和部署的计算复杂性时,模型结构和数值表示都会修改,因此,软误差稳健性也会改变。从这个意义上说,尽管DNN模型中的激活功能(AFS)的选择经常被忽略,但它不仅可以预测它们的准确性和训练性,还可以应对可压缩率和数值鲁棒性。本文涉及使用有限的AFS来提高模型鲁棒性对DNN参数扰动的适用性,同时评估了此选择对模型准确性,可压缩性和计算负担的影响。尤其是我们分析了旨在在高光谱图像上执行语义分割任务的编码器完全卷积模型,以在自主驾驶中进行场景理解。部署表征是在AMD-Xilinx的KV260 SOM上进行实验的。索引项 - 稳定性,激活功能,模型组合,边缘计算,语义分割
摘要 - 在图形处理单元(GPU)上执行的深神经网络(DNN)的可靠性评估是一个具有挑战性的问题,因为硬件体系结构非常复杂,软件框架由许多抽象层组成。虽然软件级故障注入是评估复杂应用程序可靠性的一种常见且快速的方法,但它可能会产生不切实际的结果,因为它对硬件资源的访问有限,并且采用的故障模型可能太幼稚(即单位和双位翻转)。相反,用中子光束注射物理断层提供了现实的错误率,但缺乏故障传播可见性。本文提出了DNN故障模型的表征,该模型在软件级别结合了中子束实验和故障注入。我们将运行一般矩阵乘法(GEMM)和DNN的GPU暴露于梁中子,以测量其错误率。在DNNS上,我们观察到关键错误的百分比可能高达61%,并表明ECC在减少关键错误方面无效。然后,我们使用RTL模拟得出的故障模型进行了互补的软件级故障注入。我们的结果表明,通过注射复杂的断层模型,Yolov3的误导率被验证为非常接近通过光束实验测得的速率,该速率比仅使用单位倒换的断层注射测量的频率高8.66倍。
深神经网络(DNN)中所谓的“注意机制”表示DNN的自动适应,以捕获具有特定分类任务和相关数据的代表性特征。这种注意机制通过加强特征通道和本地强调每个特征图中的特征来在全球范围内发挥作用。渠道和特征重要性是在全球端到端DNS培训过程中学习的。在本文中,我们提出了一项研究,并提出了一种具有不同方法的方法,并在训练图像旁边添加了补充视觉数据。我们使用人类的视觉注意图在任务驱动或自由观看条件下独立于心理视觉实验获得的人类视觉注意图,或者在自由观看条件下或预测视觉注意图的强大模型。我们在图像旁边添加了视觉注意图作为新数据,从而将人类的视觉注意力引入DNNS培训中,并将其与全球和局部自动注意机制进行比较。实验结果表明,DNN中的已知注意力机制几乎与人类的视觉关注在一起,但提出的方法仍然可以更快地收敛和在图像分类任务中更好地表现。
癫痫是由癫痫发作引起的最常见的神经系统疾病之一,也是中风后第二大普遍的神经系统疾病,影响了全球数百万的人。患有癫痫病的人被认为是残疾人的类别。它会大大损害一个人执行日常任务的能力,尤其是那些需要集中或记住的任务。脑电图(EEG)信号通常用于诊断癫痫患者。但是,这是乏味的,耗时的,并且遭受人类错误。已经应用了几种机器学习技术以识别癫痫病,但它们有一些局限性。本研究提出了一个深神网络(DNN)机器学习模型,以通过提高癫痫疾病的识别效率来确定先前研究的现有局限性。本研究中使用了公共数据集并将其分类为培训和测试集。进行了实验以评估不同数据集分类比(80:20),(70:30),(60:40)和(50:50)的DNN模型,分别用于培训和测试。通过使用不同的性能指标(包括验证)以及允许评估模型有效性的比较过程来评估结果。实验结果表明,与以前的作品相比,所提出的模型的总体效率最高,精度为97%。因此,这项研究比现有的癫痫发作检测方法更准确,更有效。DNN模型使用数值EEG数据集识别癫痫患者活动的巨大潜力,该数据集提供了数据驱动的方法,以提高癫痫发作检测系统的准确性和可靠性,以改善患者护理和癫痫的治疗。