摘要 - 基于机器学习的嵌入式系统,这些系统在安全 - 关键应用中(例如航空航天和自主驾驶)中所需的系统需要强大,以防止软错误产生的扰动。软误差是现代数字处理器越来越多的关注点,因为较小的晶体管几何形状和较低的电压使电子设备对背景辐射具有更高的敏感性。深神经网络(DNN)模型对参数扰动的弹性在很大程度上是通过模型本身的结构以及所选的数值表示并使用算术精确的。应用诸如模型修剪和模型量化之类的压缩技术来减少内存足迹和部署的计算复杂性时,模型结构和数值表示都会修改,因此,软误差稳健性也会改变。从这个意义上说,尽管DNN模型中的激活功能(AFS)的选择经常被忽略,但它不仅可以预测它们的准确性和训练性,还可以应对可压缩率和数值鲁棒性。本文涉及使用有限的AFS来提高模型鲁棒性对DNN参数扰动的适用性,同时评估了此选择对模型准确性,可压缩性和计算负担的影响。尤其是我们分析了旨在在高光谱图像上执行语义分割任务的编码器完全卷积模型,以在自主驾驶中进行场景理解。部署表征是在AMD-Xilinx的KV260 SOM上进行实验的。索引项 - 稳定性,激活功能,模型组合,边缘计算,语义分割
主要关键词