1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025
用于表征聚合物材料,评估层压石墨/热塑性样品的损伤。本研究确定了疲劳损伤对承受不同疲劳载荷的层压板的时间、温度和频率响应的影响。作者根据其他常规疲劳响应测量方法(如动态刚度和残余强度的变化)解释了 DMA 结果。他们得出结论,尽管还有很多工作要做,但该技术在复合材料中的应用对于界面行为表征以及损伤检测和表征等应用具有巨大潜力。
shipstructure.org › pdf 2 空气中钢中区域 II 生长的 C 和 m 值。海洋结构损伤容限分析指南。第 1. 11 页。
截至 2023 年 3 月,基辅经济学院 3 估计乌克兰能源部门(包括公用事业和区域供热部门)的直接损失为 95 亿美元,世界银行 4 估计为 106 亿美元。预计实际损失可能更高,因为没有关于临时占领区能源设施的完整信息,并且考虑到目前对发布该国能源基础设施设施受损详细信息的限制。损害评估报告是由由乌克兰当局和能源宪章秘书处代表组成的工作组制定的,该工作组是在“恢复乌克兰能源基础设施的合作”项目下成立的,并与其他乌克兰和国际组织合作。该项目的总体目标是协助乌克兰政府以具有成本效益的方式恢复能源基础设施,同时考虑到清洁能源转型,同时确保能源安全。该项目由欧盟委员会资助,并由能源宪章秘书处实施。免责声明
许多循环载荷结构在经过一定次数的循环后就会出现损坏,即使一个循环中的最大应力远低于静态强度。这种现象称为疲劳。这是一个关键标准,在对工程结构进行适当尺寸设计时必须考虑,因为工程结构在许多情况下会受到重复载荷。特别是在层压复合材料领域,由于其复杂的损伤机制,疲劳仍然是广泛研究的内容。本研究重点研究层压复合材料疲劳领域有限元分析 (FEA) 软件包的现状。由于可能应用于复合材料轮辋(其中会出现疲劳脱层问题),因此评估的重点在于层间疲劳损伤。
© 编辑(如适用)和作者 2021。本书为开放获取出版物。开放获取本书根据知识共享署名 4.0 国际许可证 (http://creativecommons.org/licenses/by/4.0/) 的条款进行许可,允许以任何媒体或格式使用、共享、改编、分发和复制,只要您给予原作者和来源适当的信任,提供知识共享许可证的链接并指明是否做了更改。本书中的图像或其他第三方资料包含在本书的知识共享许可证中,除非资料的致谢中另有说明。如果资料未包含在本书的知识共享许可证中,且您的预期用途不被法定规定允许或超出允许的用途,则需要直接从版权所有者处获得许可。本出版物中使用的一般描述性名称、注册名称、商标、服务标记等,即使没有特别声明,也并不意味着这些名称不受相关保护法律和法规的约束,因此可以自由使用。出版商、作者和编辑可以放心地认为,本书中的建议和信息在出版之日是真实准确的。出版商、作者或编辑均不对本书所含材料或可能出现的任何错误或遗漏提供明示或暗示的保证。出版商对已出版地图和机构隶属关系中的司法管辖权主张保持中立。
A 区是指社区洪水保险费率图上显示的特殊洪水灾害区。A 区是百年一遇洪水期间可能被淹没的区域,即每年有 1% 的概率达到或超过洪水高度。A 区有几种类别,包括 AO(浅层流或积水;显示平均洪水深度);AH 区(浅层洪水;显示洪水基准高度);编号 A 区和 AE 区(显示洪水基准高度);以及未编号 A 区(由于未进行详细的水力分析,因此未提供洪水基准高度)。
2022 年 2 月 24 日,俄罗斯联邦发动的全面军事侵略对乌克兰能源部门产生了重大负面影响。由于能源基础设施具有经济、人道主义和地缘政治重要性,因此一直是俄罗斯军队的主要目标之一。第一份乌克兰能源部门评估和损害评估报告于 2022 年 8 月 24 日发布,即俄罗斯全面入侵六个月周年纪念日(Task Force,2022 年)。1 第二份报告涵盖了 2022 年 8 月 25 日至 9 月 24 日期间。2 第三份简要报告涵盖了 2022 年 9 月 25 日至 10 月 24 日期间 3 。截至2022年11月24日,俄罗斯约50%的全国装机容量、数千公里的电力、天然气和热力网络、变压器、压缩机站和供热点被占领或损坏。炼油行业遭到破坏。电力和天然气消耗量与2021年相比下降了30-35%。2022-2023年全国供暖季风险较高。
与传统的有线 SHM 系统相比,基于无线传感器网络 (WSN) 的 SHM 系统在成本、准确性和监测可靠性方面有显著改善。然而,由于传感器节点的资源受限,实时处理大量感测到的振动数据是一项挑战。现有的数据处理机制是集中式的,使用云或远程服务器来分析数据以表征桥梁的状态,即健康或受损。这些方法对于有线 SHM 系统是可行的,然而,在 WSN 中传输大量数据集已被发现是艰巨的。在本文中,我们提出了一种名为“网络内边缘损伤检测 (INDDE)”的机制,该机制从原始加速度测量中提取与桥梁健康状况相对应的统计特征,并使用它们来训练概率模型,即估计多元高斯分布的概率密度函数 (PDF)。训练后的模型有助于实时识别从桥梁未知状况中收集的新数据点的异常行为。每个边缘设备根据其各自的训练模型将桥梁状况分类为部署区域周围的“健康”或“受损”。实验结果展示了约 96-100% 的损伤检测准确率,其优势是无需从传感器节点传输数据到云端进行处理。
摘要。用于传播导波的压电超声波传感器可用于检查工程结构中的大面积区域。然而,导波声信号固有的色散和噪声、结构中的多重回波以及缺乏近似或精确的模型,限制了它们作为连续结构健康监测系统的使用。在本文中,研究了在板状结构上随机放置压电传感器网络以检测和定位人为损坏的实现。在厚度为 1.9 毫米的铝薄板上设置了一个以一发一收配置工作的宏纤维复合材料 (MFC) 传感器网络。使用离散小波变换在时间尺度域中分析信号。这项工作有三个目标,即首先使用传感器网络产生的超声波的短时小波熵 (STWE) 开发基于熵分布的损伤指数,其次确定备用宏光纤复合材料 (MFC) 传感器阵列检测人为损伤的性能,第三对收集的信号实施到达时间 (TOA) 算法,以定位人造圆形不连续的损伤。我们的初步测试结果表明,所提出的方法为损伤检测提供了足够的信息,一旦与 TOA 算法相结合,就可以定位损伤。