mL已成为脑电图数据分析的关键工具,在BCI快速扩展的领域中起着至关重要的作用[6,11,13,26,28,29]。丰富的脑电图数据集的可用性为研究人员提供了使用ML技术的激动人心的机会,从而推动了创新的方法进行脑电图数据分析。然而,激增的研究产出导致了大量的论文,这对于具有计算机科学(CS)背景的新移民而言,这具有效地导航该领域。回答这个问题,我们的论文对当前文献进行了系统的综述,特别着眼于使用ML技术解释脑电图,从而强调了截至2023年的现行趋势。通过综合和组织这些发现,我们旨在促进对BCI研究现状的更深入了解,并提供指导,以确定未来研究的有希望的方向。为了进一步的帮助读者,我们包括表1,列出了本文中使用的首字母缩写词。这项全面的审查旨在使CS学生能够在BCI中使用知识和见解,从而为这个令人兴奋且迅速发展的领域做出有意义的贡献。
作为人类,我们用所有感官或模态(听觉、视觉、触觉、嗅觉和味觉)体验世界。我们使用这些模态,特别是视觉和触觉,来传达和解释特定的含义。多模态表达是对话的核心;一组丰富的模态会相互放大并经常相互补偿。多模态对话 AI 系统通过多种模态理解和表达自己来回答问题、完成任务并模拟人类对话。本文激励、定义并以数学形式表述了多模态对话研究目标。我们提供了解决目标所需的研究分类:多模态表示、融合、对齐、翻译和共同学习。我们调查了每个研究领域的最新数据集和方法,并强调了它们的限制性假设。最后,我们将多模态共同学习确定为多模态对话式人工智能研究的一个有希望的方向。
作为基因编写领域的先驱,Tessera Therapeutics 正在通过完善将短信息或长信息插入任何基因组的能力来改变人类治疗疾病的方式。Tessera 寻求一种解决方案,以确保超过 12 TB 的科学数据在由湿科学家和计算生物学家组成的大型跨职能团队中可查找、可访问、可互操作和可重复使用 (FAIR)。Tessera 利用 Quilt 和 Nextflow 的组合来加速其基因编辑发现的上市。
螺丝包装。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。3。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。4个backercelldata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5 5 Bachmarydata。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>6 Baronpancreasdata。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>7 Bhaduri Organica Suitata。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 8个对接Anescdata。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>7 Bhaduri Organica Suitata。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>8个对接Anescdata。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>8个对接Anescdata。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 BunishSpcdata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。10 CampbellbrainData。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 Chenbraindata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12个反机分子。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13 Darmanisbraindata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。14 erccspikeinconenentations。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。15 Ernstsermatogentesisdata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16提取。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>18 Gilaihdihscdata。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>20 Grunhscdata。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>21 grunpancreasdata。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>22 Heorganatlasda。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>23 Hermannstattotonesissdata。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>24 Hucortexdata。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>25 Jessabraindata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。27 Kolodziejczykescdata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。28 Kotliarovpbmcdata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。29 Lamannobraindata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。30 Lawlorpancreasdata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。32 Ledergormyelomadata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。33 lengescdata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。34个列表。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。35个列表。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。35星期一。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。36 MacCoretinadata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。37 mairpbmcdata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。38 MarquesbrainData。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。39 Messmerescdata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。40 Muraropancreasdata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。41 Netorowahscdata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。42 Nowawskiciceortexdata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。44 Paulhscdata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。45波兰人。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。46 Pollngliadata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。47个重新效果。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。48重新处理。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。49 RichardCelldata。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 5149 RichardCelldata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。51
蓝图编码。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。2个数据库Munecellexpressiondata。。。。。。。。。。。。。。。。。。。。。。。。。。。3提取。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。5人类primarycellatlasdata。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>6 Meremara。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 8列表流。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 9摩纳哥imimedata。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div>6 Meremara。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>8列表流。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>9摩纳哥imimedata。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。10 Mousernaseqdata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12 Novershternhematopoieticdata。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13个重新效果。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16省力。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16个系列参考。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17个监视。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18
Malacoherpesviridae的家族目前仅由两种感染软体动物的病毒,Ostreid疱疹病毒1(OSHV-1)和卤素疱疹病毒1(HAHV-1)表示,既导致了水产养殖物种的有害感染。还通过在两栖类药物(分支群瘤物种)和Annelid Worm(Capitella teleta)中的基因组测序项目(Capitella teleta)中检测到类似麦芽菌病毒的序列,这表明水生动物中有隐藏的马拉科植物病毒的多样性存在。在这里,为了扩展有关Malacoherpesvirus多样性的知识,我们在基因组,转录组和元基因组数据集中搜索了Malacoherpesvirus亲戚的存在,包括来自Tara Oceans探险队,并报告了4个新颖的Malacoherpesvirus类基因组(Malacoike Genomes(Malacohemes)(Malacohemes(malacohv1-4))。基因组分析建议腹足动物和双壳类作为这些新的马拉科佩病毒的最可能的宿主。基于家族B DNA聚合酶的系统发育分析分别将新型的MalacoHV1和MalacOHV3作为OSHV-1和HAHV-1的姐妹谱系,而MalacoHV2和MalacOHV4表现出更高的差异。发现与两栖动物相关的病毒基因组与malacohv4相关,形成了Mollusc和Annelid malacoherpesviruse的姊妹进化枝,这表明这两种病毒组合的早期分歧。总而言之,尽管在可用序列数据库中相对较少,但先前未描述的马拉科佩病毒Malacohv1-4在水生生态系统中循环,并且在不断变化的环境条件下应被视为可能是新兴病毒。
非侵入性脑部计算机界面(BCIS)是一种令人兴奋的技术,它为大脑与计算机之间的通信提供了通道。bcis可用于交流(Brumberg等,2018; Chaudhary等,2016),康复(Cervera等,2018),娱乐设备(Gürkök等,2017),以及其他应用程序(Finke等,2009; Makeig et e e e ectig et al。,2011)。在本研究主题的第一卷(Daly等,2021)中,我们发布了包括通过多种模式和BCI范式记录的信号的数据集,包括新型事件相关电位(ERP)(ERP)和基于稳态的视觉诱发电位(SSVEP)基于BCIS的bcis,Motor bcis,Motory bcis,BCIS,BCIS,BCIS,a bciiss a a,a bcis,a bciS a效率,效果,尼古丁成瘾的BCIS以及静止状态数据。但是,BCI的研究正在不断发展,对新的公开数据集的需求越来越不断发展。的确,BCI技术的持续发展取决于许多不同的研究领域的进步,这些研究领域可以单独和集体地改善BCI系统的各个方面,包括信号获取,处理,分类,分类和用户界面设计。尽管如此,只有少数高质量的公共可用数据集可以在这些数据集上开发,评估和比较新的系统,工具和技术。此外,这些数据集的大小和数量相对较小,将过度拟合的风险引入了使用这些数据集开发和评估的方法。为了继续应对这一挑战,该研究主题提供了第二个出版物和相应数据集的集合。换句话说,BCI研究的可靠性和可重复性可能会因缺乏和稀疏性数据集而阻止。他们报告了在世界各地BCI研究实验室的开发,培训和评估过程中记录的生理数据集。用脑电图(EEG)和附近的红外光谱(FNIRS)收集数据。刺激范围内的刺激表现涵盖了不同的感觉方式。Botrel等人的文章。描述了一项关于神经反馈范式中关于α下调和
隐私的机器学习是一类密码方法,旨在分析私人和敏感数据的同时保留隐私,例如在大型加密数据上使用同型逻辑回归培训。在本文中,我们提出了一种有效的算法,用于使用同态加密(HE)对大加密数据进行逻辑回归训练,这是使用更快的渐变变体称为Quadratic梯度的最新方法的迷你批量版本。据称,二次梯度可以将曲线信息(Hessian矩阵)集成到梯度中,因此可以有效地加速一阶梯度(下降)算法。当加密的数据集如此之大,以至于必须以迷你批次方式加密时,我们还实现了其方法的全批量版本。我们将迷你批次算法与我们的全批量实施方法进行了比较,这些方法由422,108个带有200粒的样本组成的真实财务数据进行了比较。鉴于HES的效率低下,我们的结果令人鼓舞,并证明了大型加密数据集的Logistic回归培训具有可行性,这标志着我们理解的重要里程碑。
摘要 要理解物体表征,需要对视觉世界中的物体进行广泛、全面的采样,并对大脑活动和行为进行密集测量。在这里,我们展示了 THINGS-data,这是一个多模态的人类大规模神经成像和行为数据集集合,包括密集采样的功能性 MRI 和脑磁图记录,以及针对多达 1,854 个物体概念的数千张照片的 470 万个相似性判断。THINGS-data 的独特之处在于其丰富的注释对象范围,允许大规模测试无数假设,同时评估先前发现的可重复性。除了每个单独的数据集承诺的独特见解之外,THINGS-data 的多模态性还允许组合数据集,从而比以前更广泛地了解物体处理。我们的分析证明了数据集的高质量,并提供了五个假设驱动和数据驱动的应用程序示例。 THINGS-data 是 THINGS 计划 ( https://things-initiative.org ) 的核心公开发布版本,旨在弥合学科之间的差距和认知神经科学的进步。