摘要 — 本文介绍了单片微波集成电路功率放大器的设计和实验结果,其中将 FET 堆叠方法与 Doherty 架构相结合,以最大限度地提高可实现的性能。具体而言,堆叠单元是通过将共源设备拆分为两个较小的设备来实现的,从而形成非常紧凑和对称的结构,而 Doherty 理念则用于实现高回退效率。该芯片采用 100 nm 栅极长度的硅基氮化镓技术实现,面向下行卫星 Ka 波段。两级放大器不仅满足功率要求,还满足空间使用的热约束。在 17.3 GHz 至 20.3 GHz 的频率范围内,测量结果显示线性增益约为 25 dB,峰值功率为 38 dBm,功率附加效率大于 35%。索引词 — Doherty 放大器、高效率、空间应用、氮化镓
本文讨论了为下一代 K 波段 17.3 – 20.2 GHz 超高吞吐量卫星开发的单片微波集成电路 (MMIC) 功率放大器的设计步骤和实验特性。所用技术是商用的 100 纳米栅极长度硅基氮化镓工艺。该芯片的开发考虑到了航天器的严格约束,特别是仔细考虑了这种技术的热约束,以便在最坏情况下(即最高环境温度为 85°C)将所有器件的结温保持在 160°C 以下。基于三级架构的实现的 MMIC 首先在脉冲模式下进行晶圆上特性分析,随后安装在测试夹具中并在连续波工作条件下进行特性分析。在 17.3 – 20.2 GHz 工作带宽内,内置放大器提供输出功率 >40 dBm,功率附加效率接近 30%(峰值 >40%),功率增益为 22 dB。
摘要:在本文中,提出了基于硅(gan-on-on-si)上基于氮化壳的KU波段主动雷达应用的微波整体整合电路(MMIC)高功率放大器(HPA)。设计基于三阶段的体系结构,并使用Ommic Foundry提供的D01GH技术实施。以及稳定性和热分析提供了有关最大化交付功率的体系结构定义和设计过程的详细信息。为了优化放大器性能,输出组合仪中包含了不对称性。实验结果表明,HPA达到39.5 dBM脉冲模式输出功率,峰值线性增益为23 dB,排水效率为27%,并且在16-19 GHz频率范围内具有良好的输入/输出匹配。芯片区域为5×3.5 mm 2,用于测量值安装在定制模块上。这些结果表明,基于GAN-on-SI的固态功率放大器(SSPA)可用于实现KU波段活动雷达。
摘要 — 介绍了一种用于 300 GHz 左右高速通信的宽带三级伪差分 SiGe 互连双极晶体管 (HBT) 功率放大器 (PA)。该放大器采用实验性的 130 nm SiGe BiCMOS 技术制造,ft / f max 为 470/650 GHz。建议使用非对称耦合线变压器在所有放大器接口处进行器件电抗补偿,以促进宽带阻抗变换。该放大器的最大小信号功率增益为 23.0 dB,P sat /OP 1 dB 分别高达 9.7/6.7 dBm。它在小信号操作中显示 63 GHz(239-302 GHz)的 3-dB 带宽,在饱和时显示 94 GHz(223-317 GHz)的 3-dB 带宽。该放大器在 3 V 电源电压下消耗大约 360 mW,在 260 GHz 时产生 1.95% 的峰值功率附加效率 (PAE)。
4 4 0 0 3 3 M M H H z z A A n n t t e e n n n n a a / / L L N N A A Antenna Type Quadra Helix Construction Aluminum/Fiberglass Composite Polarization Vertical, Circular Overhead 4 4 0 0 3 3 M M H H z z R R e e c c e e i i v v e e r r Type Superheterodyne Frequency Control Synthesized with AFC Bandwidth 15 kHz调制FM FM FSK敏感性12 dB S/N -118 DBM安装选项天线屋顶或塔架安装时间小于½天系统计算机(未显示)处理器Celeron或更高的数据输出任何Windows兼容的Mini Tope type Mini Tower w flat Scult Scult Monitor Windows Windows Windows Windows 2000或更高的Rugged Mil -STD可用
摘要 — 具有超低功耗无线电功能的低成本设备是智能设备面临的主要挑战,而智能通信需要永久开启的接收器。本文提出了一种唤醒无线电,它具有神经形态预处理系统,均偏置在弱反转区。该系统能够接收 2.4 GHz 信号、对其进行解调,并根据神经元的尖峰频率识别位模式。在 1.2 nW 的总功耗下获得了显著的性能,这比传统的 RF 包络检测器至少低三个数量级。此外,输入功率的尖峰频率响应表明,所提出的系统可以区分 2.4 GHz 的不同信号。所提出的系统实现了 1.2 pJ/bit 的能效,最小可检测信号为 -27 dBm。索引术语 — 包络检测器、神经形态传感器、物联网设备、超低功耗。
* Matthew Porteus,美国斯坦福大学医学院 * Laura Sepp-Lorenzino,美国 Intellia Therapeutics 公司 Romina Marone,瑞士巴塞尔大学,DBM 保留功能的单个氨基酸替代可保护造血干细胞和祖细胞免受体内 CD117 靶向免疫治疗的侵害 Gabriele Casirati,美国波士顿儿童医院 / 丹娜法伯癌症研究所 多重表位工程 HSPC 可实现针对急性髓系白血病的多靶点 CAR-T 细胞免疫治疗 Samuele Ferrari,意大利圣拉斐尔生命健康大学 揭示造血干细胞中碱基编辑和主要编辑的优点和缺点 Ayal Hendel,以色列巴伊兰 通过 CRISPR 基因组编辑在健康供体人类 HSPC 中多重 HDR 以校正 SCID 模拟 Sean McCutcheon,美国杜克大学基于 CRISPR 的表观基因组编辑筛选可识别人类 CD8 T 细胞功能的转录和表观遗传调控因子
超负荷后的恢复时间(注3)150 150 ns输出电压挥杆(1kΩ负载)(注意4)2 3 2 3 2 3 V PP输出电压摇摆(50Ω负载(注释4)0.7 0.9 0.9 0.9 0.9 0.9 0.9 0.9 V pp dc输出输出接收电压偏移电压-1 0.25 1 0.25 1-1 0.25 1 -1-1 0.25 1 -V dc apd温度(室内温度) 5.1±5%5.1±5%kΩ正供应电流(V +)20 35 20 35 MA负电源电流(V-)10 20 10 20 MA注意1:在指定范围内的V OP的特定值将与每个设备一起提供。注2:NEP被计算为输出光谱噪声电压除以典型的响应性。注释3:0 DBM,带有250 ns脉冲。注释4:脉冲操作,交流耦合注5:可以使用以下等式计算开尔文的热敏电阻的温度:
摘要:当前射频标识(RFID)标准之间的不相容性导致需要通用和无线保真度(Wi-Fi)兼容物联网应用程序(IoT)应用程序的RFID。这样的通用RFID需要单极双掷开关(SPDT)开关和低噪声放大器(LNA)才能通过天线指导和扩增接收到的原始信号。SPDT患有低隔离,高插入损失和低功率处理能力,而LNA遭受较小的增益,笨重的模具面积,质量较小(Q)因子,有限的调整灵活性等。由于当前一代设备中的被动电感器使用情况。在这项研究中,提出了基于互补的金属氧化物半导体(CMOS)的无电感SPDT和LNA设计。SPDT采用了一系列拓扑以及平行的共振电路和电阻体漂浮,以实现改进的插入损失和隔离性能,而LNA设计则以Gyrator概念实现,其中频率选择性储罐电路与伴随的活跃电感器形成了伴随的频率,并由伴随的激活电感器形成。使用90 nm CMOS的cmos cmos过程的表明,我们的SPDT设计完成了0.83 dB的插入损失,45.3 dB的隔离和11.3 dBM的动力处理能力,而LNA则达到33 dB的频率为33 db,bandf of 30 mhz和30 mhzz和db nf的频率。 SPDT和LNA的布局非常紧凑,分别为0.003 mm 2和127.7μm2。 这样的SPDT和LNA设计将增强与Wi-Fi兼容的IoT RFID技术的广泛改编。表明,我们的SPDT设计完成了0.83 dB的插入损失,45.3 dB的隔离和11.3 dBM的动力处理能力,而LNA则达到33 dB的频率为33 db,bandf of 30 mhz和30 mhzz和db nf的频率。SPDT和LNA的布局非常紧凑,分别为0.003 mm 2和127.7μm2。这样的SPDT和LNA设计将增强与Wi-Fi兼容的IoT RFID技术的广泛改编。
本文研究并设计了一种矩形微带贴片天线,该天线带有一个矩形缝隙,工作频率为 28 GHz,适用于第五代 (5G) 无线应用,采用微带线技术馈电。这个缝隙的目的是提高天线的性能。该天线建立在 Roger RT duroid 5880 型基板上,其相对介电常数等于 2.2,高度为 h = 0.5 毫米,损耗角正切为 0.0009。该天线的紧凑尺寸为 4.2 毫米 × 3.3 毫米 × 0.5 毫米。该天线的仿真是使用高频结构模拟器 (HFSS) 和计算机仿真技术 (CST) 软件进行的,其主要目的是确认该天线获得的结果。这些模拟的结果如下:谐振频率为 27.97 GHz,反射系数 (𝑆 11 ) 为 -20.95 dB,带宽为 1.06 GHz,增益为 7.5 dB,辐射功率为 29.9 dBm,效率为 99.83%。该天线获得的结果优于当前科学期刊上发表的现有天线获得的结果。因此,该天线很可能满足 5G 无线通信应用的需求。