摘要 — 本文提出了一种基于宽带隙 RF 技术设计低噪声放大器的原创方法。这些 LNA 能够承受高电磁信号(如电子战中使用的信号),同时提供高探测率。该研究介绍了基于相同策略的单级 LNA 和两级 LNA 的原始设计程序。这些自重构 LNA 可以从高探测率模式(低 NF)切换到高线性模式(高输入压缩模式 IP 1dB )。该设计策略与稳健的 LNA 设计进行了比较,后者使用更大的晶体管尺寸来提高线性度,但代价是 NF 略有下降。在放大器输入端,RF 步进应力结果已达到 30 dBm,没有任何破坏,并提供稳定的 S 参数和噪声系数。
招聘广告:博士职位“使用患者衍生的乳腺癌中的药物筛查和生物标志物发现药物筛查和生物标志物” 100%,从2024年10月开始。博士后定量癌症生物学的博士职位可在Momo Bentires-Alj教授(实验室网站:https://bentireslab.org/)的实验室中获得,位于瑞士巴塞尔的生物医学系(DBM)。成功的候选人将使用三重阴性乳腺癌患者衍生的甲类模型(PDO)研究抑制关键信号蛋白的治疗潜力。成功的候选人将成为实验室“个性化医学”子组的一部分,并将使用我们既定的管道以及多摩学分析和计算分析有助于模型的建立和表征,药物筛查和分析。最后,候选人将研究潜在的分子机制并验证潜在的生物标志物。我们实验室的选定相关出版物:
集成 12 位 DAC 和 ADC 的射频 (RF) 2 × 2 收发器 宽带宽:325 MHz 至 3.8 GHz 支持时分双工 (TDD) 和频分双工 (FDD) 操作 可调通道带宽 (BW):高达 20 MHz 接收器:6 个差分输入或 12 个单端输入 卓越的接收器灵敏度,噪声系数:3 dB 接收 (Rx) 增益控制 用于手动增益的实时监视器和控制信号 独立的自动增益控制 (AGC) 双发射器:4 个差分输出 高线性宽带发射器 发射 (Tx) 误差矢量幅度 (EVM):−34 dB Tx 噪声:≤−157 dBm/Hz 本底噪声 Tx 监视器:66 dB 动态范围,精度为 1 dB 集成小数 N 合成器 2.4 Hz 本振 (LO) 步长 CMOS/LVDS 数字接口
摘要 - 物联网(IoT)设备的使用已通过许多不同的领域传播。农业的运输,健康和能源管理是使用物联网系统的一些领域。对物联网系统的无线通信技术的选择对于其最佳性能至关重要。但是,必须考虑此选择的因素,例如所需的覆盖范围或能源消耗。在本文中,已经执行了使用低成本物联网设备的WiFi和Lora低功率广泛区域网络(LPWAN)传输后确定可获得的电池寿命。具有5秒的传输间隔和默认设置,WiFi和Lora都获得了类似的结果。此外,WiFi的表现优于默认设置和30秒的传输间隔。最后,洛拉(Lora)在更改的设置变化时确实跑赢了wifi,因为洛拉(Lora)的传输功率为10 dbm。
摘要:本文提出了一种具有宽调谐范围的超低功耗 K 波段 LC-VCO(压控振荡器)。基于电流复用拓扑,利用动态背栅偏置技术来降低功耗并增加调谐范围。利用该技术,允许使用小尺寸的交叉耦合对,从而降低寄生电容和功耗。所提出的 VCO 采用 SMIC 55 nm 1P7M CMOS 工艺实现,频率调谐范围为 22.2 GHz 至 26.9 GHz,为 19.1%,在 1.2 V 电源下功耗仅为 1.9 mW–2.1 mW,占用核心面积为 0.043 mm 2 。在整个调谐范围内,相位噪声范围从 -107.1 dBC/HZ 到 -101.9 dBc/Hz (1 MHz 偏移),而总谐波失真 (THD) 和输出功率分别达到 -40.6 dB 和 -2.9 dBm。
本文介绍了用于无线传感器网络 (WSN) 应用的超低功耗低噪声放大器 (LNA) 的设计拓扑。所提出的超低功耗 2.4 GHz CMOS LNA 设计采用 0.13 µm Silterra 技术实现。LNA 的低功耗得益于第一级和第二级的正向体偏置技术。为了提高增益,同时降低整个电路的功耗,实施了两级。仿真结果表明,在 0.55 V 的低电源电压下,总功耗仅为 0.45 mW。与之前的工作相比,功耗降低了约 36%。实现了 15.1 dB 的增益、5.9 dB 的噪声系数 (NF) 和 -2 dBm 的输入三阶截点 (IIP3)。输入回波损耗 (S11) 和输出回波损耗 (S22) 分别为 -17.6 dB 和 -12.3 dB。同时,计算出的品质因数(FOM)为7.19 mW -1 。
2019 年,荷兰埃因霍温理工大学开发了一种隧道二极管,允许输入 2.4 GHz 的 −25 至 −10 dBm 微波功率,与传统 SBD 相比,隧道二极管具有更高的 RF-DC 转换效率。使用由卡诺极限确定的高阻抗(Q 匹配电路)天线也可以获得高 RF-DC 转换效率。利物浦大学开发了一种阻抗 >400- Ω 的低功率宽带整流天线,它在 0.9-1.1 GHz 和 1.8-2.5 GHz 之间实现了 75% 的 RF-DC 转换效率。 2016 年,日本金泽工业大学设计了一种 1.6k 高阻抗整流天线,用于收集 500MHz 的数字电视信号,在 -15dBm 的 RF 功率输入下可获得 49% 的 RF-DC 转换效率,在 -30dBm 的输入功率下可获得 8.7% 的效率
本文讨论了为下一代K频段17.3 - 20.2 GHz开发的整体微波集成电路(MMIC)功率放大器的设计步骤和实验表征。所使用的技术是硅工艺上的市售100 nm栅极长壳。考虑到航天器的苛刻约束,尤其是仔细考虑了这种技术的热约束,以保持所有设备的连接温度在最差的情况下(即,最高环境温度为85°C)。已实现的MMIC基于三阶段的结构,首先以脉冲制度进行了晶状体表征,随后将其安装在测试jig中,并在连续的波浪工作条件下进行表征。在17.3 - 20.2 GHz操作带宽中,构建的放大器可导致输出功率> 40 dbm,功率添加效率接近30%(峰值> 40%)和22 dB的功率增益。
摘要 — 具有超低功耗无线电功能的低成本设备是智能设备面临的主要挑战,而智能通信需要永久开启的接收器。本文提出了一种唤醒无线电,它具有神经形态预处理系统,均偏置在弱反转区。该系统能够接收 2.4 GHz 信号、对其进行解调,并根据神经元的尖峰频率识别位模式。在 1.2 nW 的总功耗下获得了显著的性能,这比传统的 RF 包络检测器至少低三个数量级。此外,输入功率的尖峰频率响应表明,所提出的系统可以区分 2.4 GHz 的不同信号。所提出的系统实现了 1.2 pJ/bit 的能效,最小可检测信号为 -27 dBm。索引术语 — 包络检测器、神经形态传感器、物联网设备、超低功耗。