它们在地球大气中。自然,这样的大型计划需要资金。因此,建议可以通过为每个太空任务设定关税(等于任务成本的3%至5%)来提供融资。收集的资金可用于研究,以便解决该问题的解决方案,并确保空间碎片的回收利用。这项工作也可以用作寻求保护地球环境的人的伴侣。
自2016年以来,布拉迪斯拉娃(Bratislava)Comenius大学的数学,物理学和信息学学院(FMPI)经营着它拥有70厘米的牛顿重新流动(AGO70),其主要侧重于空间杂物对象的观察和表征。近年来,已经对AGO70的硬件和软件进行了几项重大更新,包括望远镜的安装控制单元(MCU),观察计划和控制系统(SCH,LLTC),图像处理系统(IPS)和TLE改进系统(TLEI)。MCU以及SCH和LLTC允许观察狮子座的物体,角速度高达1.5度/s。最关键的子系统之一是IPS,它已在不同类型的图像上进行了广泛的测试和验证,从使用Sidereal跟踪获取的图像到为Leo对象获得的图像。tlei提供了与卫星激光射程(SLR)传感器的界面,即由奥地利科学院(Austria)(奥地利)太空研究所(IWF)操作的Graz SLR站。这些发展的一般动机是证明和验证实时空间碎片TLEI,以提高SLR传感器的检测效率,并为获得的曲目提供敏感分析。使用获得的数据的轨道确定和天体动力分析是由瑞士伯尔尼大学天文学研究所使用自己的高级狮子座确定工具完成的。
太空碎片有可能破坏有价值的太空基础设施,但是碎片造成的损害不是不可避免的。科学界对如何防止创建新碎片并限制现有碎片的影响有想法,但是政府采取行动才能通过这种愿景来实现这种愿景。本文解开了我们如何知道我们知道的知识,以最终讨论政策制定者如何利用卫星和碎片对轨道环境带来的长期风险的预测,以更有效地为操作员开处方行为。对可持续性的经济激励措施,包括税收和上限和贸易体系,有可能极大地利用太空任务的安全性和可靠性,但它们带来了各种政治和经济挑战,尤其是在国际层面上。现在是确定碎片管理政策战略的关键时机,因为在近期的谈判可能会设定有价值的先例
通过地面激光器发出的单个多 kJ 脉冲避免低地球轨道上的空间碎片发生烧蚀碰撞 Stefan Scharring、Gerd Wagner、Jürgen Kästel、Wolfgang Riede、Jochen Speiser 德国航空航天中心 (DLR),技术物理研究所,Pfaffenwaldring 38-40,70569 斯图加特,德国 摘要 我们对一个概念性想法进行了分析,即从地面激光站发射的单个高能激光脉冲是否可能导致碎片物体表面的物质烧蚀,从而产生后坐力,从而产生足够高的速度变化,以避免空间碎片碰撞。在我们的模拟中,我们评估了大气限制的影响,例如由于气溶胶消光导致的激光功率损失以及由于大气湍流导致的激光束增宽和指向抖动。为了补偿湍流,探索了自适应光学系统在合适发射器配置和激光导星组合方面的使用。根据 ESA DISCOS 目录,使用具有简化几何形状的虚拟目标来研究激光与火箭体、任务相关物体和非活动有效载荷之间的相互作用。此外,NASA 标准破碎模型可作为碰撞和爆炸碎片的参考,这些碎片在低地球轨道上产生了 9101 个碎片目标。对于这些物体,使用基于光线追踪的代码对激光烧蚀后坐力进行了研究,同时考虑了未知的目标方向以及残余激光指向误差,这些误差构成了整个 5 个维度(3 个旋转,2 个平移)的随机性来源,这些随机性来源采用蒙特卡罗方法解决。根据特定碎片物体平均高度的计算激光通量分布计算激光动量耦合。作为计算激光与物质相互作用的输入,使用了铝、铜和钢作为代表性空间碎片材料的辐照实验数据。从照射仰角、轨道位移、动量转移不确定性、成功概率、碎片材料以及碎片尺寸、质量和启动激光烧蚀过程所需的最小能量密度等方面讨论了激光赋予动量的模拟结果。1.引言由于空间碎片的数量不断增加,且难以进行轨道改造,近年来提出了几种基于激光的空间碎片远程动量转移 (MT) 概念[1][2]。特别是,由于连续发射 (CW) 激光器的商业化应用,其平均输出功率超过 10 kW 级,通过光子压力进行 MT 似乎变得可行。为了避免空间碎片碰撞,模拟已经表明,在多次激光站过境期间,通过目标照射可以实现几毫米/秒的足够高的速度增量 [1]。最近,在 LARAMOTIONS(激光测距和动量传递系统演化研究)研究中,研究了用于碎片跟踪和避免碰撞的相应激光站网络的可行性和估计性能。这项研究是由我们研究所领导的一个财团为欧洲航天局 (ESA) 开展的概念分析。[3] 概述了研究结果,[4] 列出了使用光子压力进行轨道碰撞避免的详细天体动力学可行性研究,而 [5] 显示了所采用的激光站网络的详细结果。激光烧蚀的动量耦合比光子压力的耦合高出 3 到 5 个数量级 [6]。因此,烧蚀通常被认为是在多次高能激光站过境期间通过降低近地点清除激光碎片的合适机制。然而,最近在真空中对几厘米大小的物体进行的跌落实验表明,激光烧蚀动量转移在避免空间碎片碰撞方面具有巨大的潜力,证明单个激光脉冲就可能使小的空间碎片状物体产生几十 ⁄ 的速度变化∆ [7]。
在技术层面,确保近期运行安全和长期太空环境稳定依赖于缓解和补救措施。碎片缓解是指针对运行中的航天器的技术程序和要求,旨在降低其变成或产生碎片的可能性。它包括航天器屏蔽、防撞机动、任务后处置和在使用寿命结束时移除储存的能量以限制意外爆炸的可能性。补救是指在产生碎片后旨在降低风险的方法。它包括主动将废弃物体从轨道上移除,通过在预测碰撞时间之前影响两块碎片之一的轨迹来降低预测碰撞的概率,以及升级废弃物体使其具有防撞能力。
太空旅行的日益普及带来了重要的创新发现,然而太空中不断增加的碎片对低地球轨道的安全构成了威胁。该项目旨在通过多方面的方法解决轨道碎片问题。该项目将考虑独特的碎片减缓和清除解决方案,描述当前处理卫星在使用寿命结束后脱离轨道和空间交通管理的政策。此外,它从技术角度解决了这个问题,包括对现有碎片和当前清除解决方案(成功和失败)进行分类。通过这个项目,我们希望通过向管理官员提出轨道碎片减缓和卫星清除政策,在地方和国家空间法中实施积极的变化。在技术方面,我们将根据对现有解决方案的研究,集思广益,提出碎片清除概念,最终将形成我们设计的可行原型。这项研究的另一个成果是提供有关空间碎片主题的教育资源,揭示问题。随着我们继续了解太空中现有的碎片,信息收集工作正在进行中。
由于太空物体数量不断增加,碎片撞击运行中的航天器变得越来越常见。样本返回任务表明发生了数百次小撞击,但通常只有在撞击导致航天器性能异常时才会进行严格分析。开发识别和评估不会立即导致异常行为的小撞击的技术有助于验证碎片群模型、进行风险评估并帮助确定未来异常的归因。本研究将碎片撞击引入航天器动力学模拟并评估其对航天器遥测的影响。各种信号处理和变化检测技术用于识别嘈杂遥测中的撞击并估计撞击参数。开发了匹配滤波器小波来识别对状态遥测的影响,其中误差由航天器姿态控制系统自主校正。一组匹配滤波器用于根据对航天器响应特性的先验知识来估计撞击的参数。使用顺序概率比测试来突出显示航天器角动量的突然变化。进行蒙特卡罗分析以表征这些算法的性能。在正确识别碎片撞击和准确估计撞击参数方面,比较了各种技术的结果。开发对小型碎片撞击进行分类和表征的能力使任何航天器都可以用作现场碎片传感器。
简介 自 1978 年唐纳德·J·凯斯勒和伯顿·库尔帕莱斯发表论文《人造卫星的碰撞频率:碎片带的形成》以来,太空垃圾一直是太空参与者关注的重要问题。尽管迄今为止在碎片清除方面采取的行动很少,但该论文引发了数十年的研究,这些研究描述了外层空间碎片的数量、类型和轨道,以及制定了世界各地认可的自愿碎片减缓标准。当今现有的大部分太空垃圾都是推进剂爆炸或蓄意破坏行为的结果。已知最大的碎片产生事件是 2007 年中国的反卫星 (ASAT) 试验,其中 SC-19 动能拦截弹故意摧毁了一颗中国气象卫星。1 为了提供关于太空垃圾寿命的参考点,目前在轨道上运行的最古老的碎片是美国先锋 1 号卫星。先锋 1 号于 1958 年发射升空,进入中地球轨道 (MEO),并将在该轨道上停留至少 200 年,直到自然衰减回地球大气层或在此之前被故意脱离轨道。2
太空垃圾是围绕地球运行的人造物体,功能失调。太空技术的小型化和进步促进了小型卫星群数量的增加。多年来,在轨灾难性事件导致太空污染呈指数级增长,太空垃圾的覆盖范围不断扩大。一个由私人机构和太空机构组成的国际联盟共同努力,通过与主动碎片跟踪和清除方法相关的广泛研究和开发来解决这一问题。基于同样的理由,德国航空航天中心技术物理研究所正在开发地面高能激光设施和光学仪器,以跟踪和清除低地球轨道上的太空垃圾。实习项目旨在开发一种运动跟踪器软件,以跟踪通过激光与物质相互作用产生脉冲的技术演示实验中的样本。为了实现这一目标,我们审查并分析了计算机视觉中的几种物体检测和运动跟踪算法。对于物体检测,Harris 角点检测器和尺度不变特征变换算法表现出不错的成功率。基于光流点的跟踪最有希望获得三维样本轨迹,特别是在多视角相机配置中。用于软件开发的参考数据文件是整个项目期间激光与物质相互作用实验中最初获得的高速视频。
使用高速撞击点火测试系统研究脆性铝热剂弹丸以 850 和 1200 米/秒的速度撞击惰性钢靶时的动态响应。弹丸包括固结的铝和三氧化二铋,由推进剂驱动的枪发射到配备高速成像诊断装置的捕集室中。弹丸穿过捕集室入口处的防爆屏,在穿透防爆屏时碎裂或在撞击钢靶之前保持完整。在所有情况下,弹丸在撞击时都会粉碎,反应碎片云会扩散到捕集室中。在较低的撞击速度下,碎裂弹丸和完整弹丸产生的火焰蔓延速度相似,均为 217 – 255 米/秒。在较高的撞击速度下,完整的射弹产生最慢的平均火焰蔓延速度,为 179 米/秒,因为碎片的反弹受到射弹长度的限制,并且由此产生的碎片场在径向高度集中。相比之下,破碎的射弹反弹成分散良好的碎片云,其火焰蔓延速度最高,为 353 米/秒。提出使用动能通量阈值来描述观察到的碎片分散和火焰蔓延速度的变化。使用计算流体力学代码开发了一种基于粒子燃烧时间的反应性模型,该模型结合了多相环境中的传热和粒子燃烧,以了解粒径如何影响火焰蔓延。模型结果显示,对于较小颗粒碎片,更快的反应性和增加的阻力抑制运动之间存在权衡。