作为下一代对撞机,CEPC远远超出了Higgs工厂:•寻找H,Z,B和𝜏的异国情调或罕见衰减以及新物理学•巨大的测量潜在的SM:HIGGS,HIGGS,Electroweak Physics,electroweak Physics,flain Physics,QCD/QCD/Top
量子网络是实现分布式量子信息处理的关键。由于单链路通信速率随距离呈指数衰减,为了实现可靠的端到端量子通信,节点数量需要随网络规模增长。对于高度连接的网络,我们发现容量会随着网络节点密度的增加而出现阈值转变——在临界密度以下,速率几乎为零,而在阈值以上,速率随密度线性增加。令人惊讶的是,在阈值以上,由于量子网络支持多路径路由,两个节点之间的典型通信容量与它们之间的距离无关。相比之下,对于连接较少的网络(例如无标度网络),端到端容量会随着节点数量的增加而饱和为常数,并且始终随距离衰减。我们的结果基于容量评估,因此可观容量的最小密度要求适用于任何量子网络的一般协议。
我们从理论上分析了 D + → νe + ρ ¯ K 和 D + → νe + ¯ K ∗ π 衰变,以查看检验手性微扰理论(UChPT)幺正扩展所预测的轴矢量共振 K 1 (1270) 的双极性质的可行性。事实上,在 UChPT 中,K 1 (1270) 是由矢量和伪标量介子的相互作用动态生成的,并且获得了该共振量子数的两个极点。较低质量极点主要与 K ∗ π 耦合,而较高质量极点与 ρK 耦合,因此我们可以预期,在产生机制中对这些通道有不同的权重的不同反应会增强一个或另一个极点。我们表明,D + → νe + VP 中不同的最终 VP 通道对两个极点的权重不同,这反映在最终矢量-赝标量不变质量分布的形状中。因此,我们得出结论,这些衰变适合在实验上区分预测的 K 1 (1270) 共振双极点。
这个科学启动项目涉及使用机器学习(ML)方法对蒙特卡洛(MC)数据集进行分析。该数据集由实验性Hadronic Physics Group(Hadrex)与Alice实验直接合作,该实验与大型强子对撞机(LHC)直接合作。该研究专门针对多震颤的重子(例如ξ⁻,ξ⁺等)以及随后的衰减,这是一个称为“级联衰变”的过程。主要目的是使用生成机器学习模型通过其次要衰减来重建这些粒子。通过综合与实验观察相吻合的现实数据,该项目旨在优化常规的高能物理学分析并增强数据分析算法,以搜索稀有可观察物。为了应对这一挑战,采用了条件表格生成对抗网络(CTGAN)模型。结果表明,CTGAN在复制可变分布的同时有效地保留了原始数据的物理和内在相关性,从而增强了其改善高能物理学数据驱动研究的潜力。
量子信息科学 (QIS) 的快速发展为探索基础物理学开辟了新途径。量子非局域性是区分量子信息与经典信息的一个关键方面,它已在粒子衰变中通过违反贝尔型不等式进行了广泛的研究。尽管取得了这些进展,但仍然缺乏基于量子信息理论的粒子相互作用综合框架。为了弥补这一差距,我们引入了自旋 1/2 超子衰变过程的广义量子测量描述。我们通过将该方法与已建立的理论计算相结合来验证该方法,并将其应用于相关 Λ ¯ Λ 对的联合衰变。我们使用量子模拟来观察超子衰变中 CHSH 不等式的违反。我们的广义测量描述具有适应性,可以扩展到各种高能过程,包括北京正负电子对撞机 (BEPC) 的北京光谱仪 III (BESIII) 实验中的矢量介子衰变 J/ψ、ψ (2 S ) → Λ ¯ Λ 。本研究开发的方法可应用于基本相互作用中的量子关联和信息处理。
In the seminal paper [ 20 ], Gidas, Ni & Nirenberg exploited the method of moving planes to prove the radial symmetry and monotonicity of positive solutions to semilinear equations such as ∆ u + κ ( x ) f ( u ) = 0 in R n , (1.1) where n ≥ 3, the nonlinearity f satisfies some regularity and growth assumptions, the solution u decays at在与F的行为相关的速率上,κ是正旋转对称的正面,严格降低功能或正常常数 - 在后一种情况下,U的对称性自然必须理解为翻译。另请参见[24,25,26]有关进一步相关的结果。本文的主要目标是解决此问题的定量稳定性结果。大致说,我们假设κ已接近一个常数,并表明在某些合适的假设下,该溶液几乎是径向的。我们还将为此结果提供定量估计值,在某些降期间,与一些描述κ与常数的接近度进行了量化。为了正确陈述结果并澄清动机,我们将引言分为三个不同的小节。在第一个小节中,我们描述了关键方程式的艺术状态,这是当前手稿的动机。然后,在其余两个小节中,我们陈述了我们的主要贡献。
使用时间相关单光子计数 (TCSPC) 装置获取时间分辨的 PL 衰减。PL 衰减曲线使用指数方程拟合:I (t)= A exp(-t/τ),其中 A 是指数项的振幅,τ 是 PL 寿命。I 代表归一化 PL 强度,t 是时间。PLQY 定义为辐射复合速率常数 (Kr) 与辐射和非辐射复合速率常数 (Knr) 之和的比率,由公式给出
丰富的氙气观测实验:•研究一种罕见的核衰减实验,称为中性剂量双β衰变•Nexo将在5000千克Xenon-136同位素中搜索中微子双β衰变(2 x 10 28核),从而使少数范围的腐烂范围及其范围的潜在腐烂范围•合并范围的范围范围,•用于从衰减中重建电子的动能的TPC•用于将生成的光信号转换为电信号的硅光化型(sipms)
图1:(a)Cu 2 Agbii 6的晶体结构,边缘共享八面体层以紫色突出显示。Ag +,Bi 3+和Cu +位点的部分占有率通过每个离子位点的圆的分数填充显示。(b)温度依赖性的光致发光和紫外可见的吸收测量值在4 - 295 K之间进行4-295 K之间的薄膜。PL峰值蓝移,温度升高。1.59 - 1.71 eV之间的阴影区域表示进行了TCSPC测量的高能量区域(如(c)所示),并从中测量了峰值计数(如图S3(c)所示)。使用Elliott的理论(黑色虚线),插图显示了在295 K处的光谱,阴影区域为60,表明了激子(蓝色)和连续性贡献,而没有(棕色),以及(绿色)库仑(绿色)库仑。请参阅更多温度和提取的参数γ的支持信息。(c)使用TCSPC在200 NJCM-2的功能下测量的时间分解PL衰变。在高温下,衰减是非常异构的(非指数),并且在低温下寿命更长。灰色实线在4和295 k处拟合到拉伸指数上。有关所有瞬态和提取参数的拟合信息,请参见支持信息。(d)使用Elliott拟合在每个温度提取的带隙能E G的值。(e)使用Elliott拟合在每个温度提取的激子结合能E B的值。
氡是一种自然产生的、化学性质惰性的、不可见的、无味的放射性气体。它很容易穿过土壤和岩石颗粒之间的小缝隙。氡-222 经过几个步骤衰变,形成半衰期较短的放射性同位素。这些同位素通常被称为氡衰变产物 (RDP),也称为氡子体或氡子体。氡的半衰期为 3.8 天。因此,它有足够的时间从铀源(生产它的地方)移动到建筑物中,在那里氡和一些 RDP 的浓度可以积聚,被吸入,并向肺组织传递一定剂量的辐射。