图1。研究工作流程的概述。这项研究的数据是从以前的出版物(10)中获得的,该出版物可在GEO上访问。数据被预处理以消除低变化和异常基因,然后训练VAE。vae由两个基本部分组成。首先,编码器将输入维度降低到任意数字。对于每个减小的尺寸,获得了两个参数,代表正态分布的平均值和标准偏差,构成了潜在空间。第二,解码器恢复了数据的原始空间,并带有关联的重建误差。为了最大程度地减少此错误,解码器的输出用于训练后处理神经网络。使用解码器的生成能力,可以创建类似于原始的合成数据,并使用它以高特异性研究MB的亚组。此外,为了解释MB亚组和基因之间的关系,在潜在空间上使用了一个分类器来区分四个MB亚组(SHH,WNT,第3组和组4)。可以通过获得需要两个步骤的基因的形状值来解释此分类。shap的树式插图获得了分类子组与潜在空间之间的关系。然后,最重要的潜在变量(解释大多数分类的变量)然后传递给Shap的Deepplainer,以获取解释亚组分类的基因。
解码器将皮质图(ECOG)信号从皮质转换为可解释的语音参数和一种新型的可区分语音合成器,将语音参数映射到频谱图。我们开发了一个由语音编码器和相同的语音合成器组成的伴侣音频到Audio自动编码器,以生成参考语音参数,以促进ECOG解码器培训。该框架具有自然听起来的语音,并且在48名参与者的队列中高度可重现。在ECOG解码器的三个神经网络架构中,3D Resnet模型在预测原始语音频谱图(PCC = 0.796)的情况下预测原始语音频谱图时具有最佳的解码性能(PCC = 0.804)。我们的实验结果表明,即使仅限于因果操作,我们的模型也可以以高相关性来解码语音,这对于通过实时神经假体采用是必不可少的。我们成功地解码了左或右半球覆盖范围的参与者中的语音,这可能导致左半球损害导致语音缺陷的患者的言语假体。此外,我们使用遮挡分析来识别有助于跨模型语音解码的皮质区域。最后,我们为我们的两阶段培训管道提供开源代码以及协会的预处理和可视化工具,以实现可重现的研究并推动跨语音科学和假体社区的研究。
摘要。嵌入式设备上的每个加密实现都容易受到侧向通道攻击的影响。为了防止这些攻击,主要的对策包括将每个敏感变量分开并独立处理。随着旨在抵抗量子计算机及其操作复杂性的新算法的即将到来,此保护代表了一个真正的挑战。在本文中,我们提出了对保护自行车加密系统解码器免受一阶攻击的早期尝试的攻击。此外,我们还引入了一个新的程序,用于对解码器的高阶掩盖,并最新进行了最新的改进。我们还提出了整个密码系统的第一个完全掩盖的实现,包括关键生成和封装。最终,为了评估对策的正确性并启动进一步的比较,我们在C中实施了对策,并提供了其性能的基准。
摘要 - 心脏内脑机界面(BMIS)将神经活动转化为控制信号,以驱动假体或通信设备,例如机器人臂或计算机光标。在临床上可行,BMI解码器必须达到高准确性和鲁棒性。优化这些解码器是昂贵的,传统上需要动物或人类的实验跨越数年。这是因为BMI是闭环系统,用户在其中更新其电动机命令是为了响应不完美的解码输出。使用先前收集的“频线”数据的解码器优化将不会对此闭环响应进行计算。明显加速的解码器优化的另一种方法是使用闭环实验模拟器。该模拟器的关键组成部分是神经编码器,该神经编码器合成从运动学产生神经种群活动。先前的神经编码器并未模拟神经种群活动的重要特征。为了克服这些局限性,我们使用了深度学习的神经编码器。我们发现了这些模型在再现刺激性时间直方图(PSTHS)和神经popula posula todyics中的先验神经编码器上的表现非常优于先前的神经编码器。我们还发现,深度学习神经启动器可以更好地匹配神经解码,从而在频道数据和闭环实验数据中结果匹配。我们预计这些深度学习的神经编码器将大大改善BMI的模拟器,从而更快地评估,优化和BMI解码器算法的表征。
对于某些问题,量子计算有望比传统计算具有显著的计算优势。然而,量子硬件的错误率比传统硬件高得多。因此,需要进行广泛的量子纠错才能执行有用的量子算法。解码器是纠错方案的关键组件,其作用是比错误在量子计算机中积累的速度更快地识别错误,并且必须使用最少的硬件资源来实现,才能扩展到实际应用的范围内。在这项工作中,我们考虑了表面码纠错,这是量子计算中最流行的纠错码系列,我们为 Union-Find 解码算法设计了一个解码器微架构。我们提出了一种三阶段全流水线硬件实现的解码器,可显著加快解码器的速度。然后,我们优化了同时对量子计算机的所有逻辑量子位执行纠错所需的解码硬件数量。通过在逻辑量子位之间共享资源,我们将硬件单元数量减少了 67%,内存容量减少了 70%。此外,我们使用低开销压缩算法将解码过程所需的带宽减少了至少 30 倍。最后,我们提供了数值证据,证明我们优化的微架构可以快速执行,足以纠正量子计算机中的错误。
LLM,也称为转换器或自回归语言模型编码器/解码器网络,在过去十年中在自然语言处理领域取得了重大进展。最显著的发展包括神经机器翻译模型,它在各种文本类型和任务上都胜过人类翻译。此外,大型 LLM 在许多自然语言处理 (NLP) 应用中越来越常见。尽管它们的性能令人印象深刻,但即使在中等规模上训练这些模型仍然需要大量计算。这种限制可能部分归因于此类 LLM 所需的参数数量非常大——每个编码器和解码器需要比同等较小模型多数百或数千个神经元。此外,训练需要大量数据。为了解决这些限制,已经提出了几种策略来微调(即预处理)
摘要-本文介绍了一种线路解码器的混合逻辑设计方法,结合了传输门逻辑和传输晶体管。针对 2-4 解码器,提出了两种新型拓扑结构:一种是旨在最小化晶体管数量和功耗的 14 晶体管拓扑结构,另一种是旨在实现高功率延迟性能的 15 晶体管拓扑结构。完整的设计是在解码器的正常模式下完成的,因此存在两种 2-4 解码器设计。此外,还设计了两个新的 4-16 解码器,使用混合逻辑 2-4 预解码器与标准 CMOS 后解码器相结合。与传统的 CMOS 解码器相比,所有提出的解码器都具有全摆幅能力和更少的晶体管数量。最后,使用 LTspice 编码在电子 VLSI 软件中对 300nm 进行了各种比较 Spice 模拟,结果表明,与 CMOS 相比,提出的电路在几乎所有情况下都具有显着的功率和延迟改进。
在人机界面中,解码器校准对于实现与机器的有效无缝交互至关重要。然而,由于解码器离线预测能力通常并不意味着易于使用,因此重新校准通常是必要的,这是因为在校准过程中无法考虑闭环动态和用户适应性。在这里,我们提出了一种自适应界面,它利用迭代训练的非线性自动编码器来执行在线流形识别和跟踪,其双重目标是减少界面重新校准的需要并提高人机联合性能。重要的是,所提出的方法避免中断设备的操作,它既不依赖于有关任务状态的信息,也不依赖于稳定的神经或运动流形的存在,因此可以在界面操作的最早阶段应用它,此时新神经策略的形成仍在进行中。为了更直接地测试我们算法的性能,我们将自动编码器潜在空间定义为身体-机器界面的控制空间。在初始离线参数调整之后,我们评估了自适应接口与静态解码器在近似用户同时学习在潜在空间内执行伸展动作的不断发展的低维流形方面的表现。结果表明,自适应方法提高了接口解码器的表征效率。同时,它显著提高了用户的任务相关表现,表明在线共同适应过程鼓励开发更准确的内部模型。© 2021 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可 (http://creativecommons.org/licenses/by-nc-nd/4.0/) 开放获取的文章。
P-D-08研究摘要用于医学图像分割的黑盒改编Jay Nitin Paranjape; Shameema Sikder,医学博士,FACS; S. Swaroop Vedula,MBBS,博士,MPH;以及马里兰州巴尔的摩的Vishal M. Patel Johns Hopkins大学;约翰·霍普金斯大学医学院,马里兰州巴尔的摩简介:大型基础模型在一般计算机视觉任务中具有先进的图像细分,但是由于接受了非医疗数据培训,它们在医学图像细分方面经常表现不佳。当前用于将这些模型调整为医疗任务的方法通常假设对模型参数完全访问,这并不总是可行的,因为许多模型仅作为API或黑框可用。此外,对此类模型进行微调可能是计算密集的,并且隐私问题限制了与第三方共享医疗数据。方法:为了解决这些挑战,我们提出了BAPS(用于促进分割的黑盒改编),这是一种新型技术,旨在在黑盒条件下适应医疗图像分割中的基础模型。BAPS由两个组成部分组成:一个图像促销解码器(IP解码器),该解码器(IP解码器)从输入映像和提示中生成视觉提示,以及零订单优化(Zoo)方法,SPSA-GC,该方法可更新IP解码器,而无需通过基础模型进行回音。此方法允许在不了解模型的权重或梯度的情况下进行适应,因此它非常适合黑色盒子方案。结果:BAPS以四种不同的医学成像方式进行了测试,表明原始基础模型的性能大约提高了4%。公开可用的BAPS代码。实现了这种改进,而没有与基础模型的内部参数进行任何直接相互作用,从而突出了我们的黑盒适应方法的有效性。结论:BAPS为将基础模型调整为医学图像分割提供了创新的解决方案,尤其是在模型参数无法访问时。通过将图像推出解码器与零订单优化方法相结合,BAP可以有效地提高分割性能,而无需访问模型的内部结构。这种方法解决了计算和隐私方面的关键挑战,为在医学成像中应用基础模型提供了新的途径。