神经活动中意识和生物行为的出现代表了神经科学中最深刻,最具挑战性的问题之一(Bullmore和Sporns,2009; Latora等,2017)。作为理解大脑功能的基石,它还具有推进精神障碍诊断和治疗以及开发受脑启发的人工通用智力的变革潜力。大脑由具有多种形态和功能的非凡神经元组成,形成了复杂的结构和功能连接的迷宫(Yuan等,2019)。对基础认知功能的神经回路原则解密,仍然是一项巨大的科学挑战。到目前为止,广泛的效果已致力于揭示神经活动如何策划意识的出现和控制行为,以及大脑的结构结构如何支持其非凡的复杂性 - 从大脑区域到单个神经元和突触的范围。内侧前额叶皮层(MPFC)在涉及工作记忆(例如计划和决策)的行为中起着至关重要的作用,但是其神经过程的复杂性仍然很困难,无法通过当前的实验设计来捕获。使用啮齿动物和灵长类动物模型,尤其是在T迷宫任务中的研究,强调了现有方法的统计局限性,包括无法完全利用神经元尖峰序列和局部领域电位(LFP)(LFP),以理解神经同步及其行为相关性。与进化的较旧的视觉皮层不同,这是由于空间组织和健壮的电信号所带来的好处,MPFC缺乏这种空间规律性,导致信号较弱,并且需要具有限制在规模上的侵入性和高度敏感的电生理技术。最近的进步,例如使用动态时间扭曲,捕获神经同步的潜力,这是MPFC功能的关键特征,但受到当前数据集和工具的不足的约束。未来的进步将需要更大的高分辨率数据集,创新的实验方法以及计算建模的跨学科整合,以应对这些挑战并促进我们对MPFC如何支持复杂的认知和行为过程的理解。
抽象的人工神经网络(ANN)是用于建模和解码神经活动的最先进工具,但是将它们部署在具有严格的正时限制的闭环实验中,因为它们在现有的实时框架中的支持有限,因此具有挑战性。研究人员需要一个平台,该平台完全支持高级语言的运行ANN(例如Python和Julia),同时维持对低延迟数据获取和处理至关重要的语言的支持(例如C和C ++)。为了满足这些需求,我们介绍了实时异步神经解码(品牌)的后端。品牌包括Linux过程,称为节点,它们通过数据流在图中相互通信。其异步设计允许在可能在不同时间范围内运行的数据流并行执行,并可以在不同的时间范围内并行执行分析。品牌使用REDIS在节点之间发送数据,该节点可以实现快速的过程间通信并支持54种不同的编程语言。因此,开发人员可以轻松地将现有的ANN模型部署在品牌中,并具有最小的实施变化。在我们的测试中,在发送大量数据时,品牌在过程之间达到了<600微秒的潜伏期(在1毫秒块中的1024个频道30 kHz神经数据)。品牌运行一个带有复发性神经网络(RNN)解码器的大脑计算机界面,从神经数据输入到解码器预测,延迟的延迟少于8毫秒。该系统还支持使用动态系统(例如潜在因子分析)进行复杂的潜在变量模型的实时推断。在系统的真实展示中,Braingate2临床试验中的参与者T11执行了标准的光标控制任务,其中30 kHz信号处理,RNN解码,任务控制和图形均在品牌中执行。通过提供一个快速,模块化和语言敏捷的框架,品牌降低了将神经科学和机器学习中最新工具集成到闭环实验中的障碍。
肽与主要组织相容性复合物(MHC)分子之间的相互作用在自身免疫,病原体识别和肿瘤免疫方面是关键的。癌症免疫疗法的最新进展需求需要更准确的MHC结合肽计算预测。我们解决了与MHC结合的肽预测的普遍性挑战,从而揭示了当前基于序列的方法的局限性。我们利用几何深度学习(GDL)的基于结构的方法表明,在看不见的MHC等位基因的普遍性方面有望提高。此外,我们通过在结构(3D-SSL)上引入一种自我监督的学习方法来解决数据效率。在不暴露于任何绑定亲和力数据的情况下,我们的3D-SSL优于基于序列的方法,该方法在〜90倍的数据点上训练。最后,我们证明了基于结构的GDL方法对乙型肝炎病毒疫苗免疫肽疗法案例研究的结合数据的偏见。这项概念验证研究强调了基于结构的方法增强通用性和数据效率的潜力,对数据密集型领域(如T细胞受体特异性预测预测)具有重要意义,为增强对免疫反应的理解和操纵铺平了道路。
基于变异自动编码器(VAE)的深层可变生成模型已显示出有希望的视听语音增强性能(AVSE)。基本的想法是学习干净的语音数据的基于VAE的视听先验分布,然后将其与统计噪声模型相结合,以从目标扬声器的嘈杂的音频录制和视频(LIP图像)中恢复语音signal。为AVSE开发的现有生成模型没有考虑到语音数据的顺序性质,从而阻止它们充分整合视觉数据的力量。在本文中,我们提出了一个视听深度卡尔曼滤波器(AV-DKF)生成模型,该模型假设了潜在变量的一阶马尔可夫链模型,并有效地融合了视听数据。此外,我们将一种有效的推理方法来估算测试时估计语音信号的方法。我们进行了一组实验,以比较语音增强的生成模型的不同变体。结果证明了AV-DKF模型的优越性,与仅音频版本以及基于Audio-Audio-forio-visual Vae模型相比。
2从稀疏的深神经网络到稀疏基质分解22 2.1神经网络简介。。。。。。。。。。。。。。。。。。。。。。。22 2.1.1神经网络的定义。。。。。。。。。。。。。。。。。。。。。。22 2.1.2神经网络的培训问题。。。。。。。。。。。。。。。。。。24 2.2稀疏神经网络的简介。。。。。。。。。。。。。。。。。。。25 2.2.1稀疏神经网络:定义和培训问题。。。。。。25 2.2.2稀疏深神经网络培训的实用方法。。。。。。。。29 2.2.3关于稀疏深神经网络的理论。。。。。。。。。。。。。34 2.3稀疏基质分解及其与稀疏深神经网络的关系。35 2.3.1问题制定和与稀疏深神经网络的第一个关系。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。35 2.3.2稀疏基质分解的算法以及稀疏DNNS训练中与修剪/再培训方法的关系。。。。。。。。。。。36 2.3.3稀疏基质分解的其他应用。。。。。。。。。。。38 2.3.4稀疏基质分解的相关作品。。。。。。。。。。。。。40 2.4固定支持矩阵分解。。。。。。。。。。。。。。。。。。。。。。。44 2.4.1问题公式。。。。。。。。。。。。。。。。。。。。。。。。。。。44 2.4.2固定支持基质分解的动机。。。45 2.4.3固定支持矩阵分解的众所周知的实例。。。。。47 2.5论文的前景。。。。。。。。。。。。。。。。。。。。。。。。。。。。。49
近年来,在音频生成的深度学习模型中已取得了重大进展,提供了有希望的工具用于Musical Creation。在这项工作中,我们研究了在互动舞蹈/音乐表演中使用深度音频生成模型的使用。我们采用了一种表演主导的研究设计方法,建立了研究者/音乐家与舞者之间的艺术研究合作。首先,我们描述了我们的运动互动系统 - 整合深度音频生成模型,并提出了三种用于体现深层空间的探索方法。然后,我们详细介绍建立以系统共同设计为中心的性能的创作过程。最后,我们报告了舞者访谈的反馈,并讨论结果和观点。代码实施在我们的GitHub 1上公开可用。
摘要背景:使用预测基因标志来协助临床决策变得越来越重要。深度学习在基因表达谱的表型预测中具有巨大的潜力。但是,神经网络被视为黑匣子,在没有任何解释的情况下,提供了准确的预测。这些模型变得可解释的要求正在增加,尤其是在医学领域。结果:我们专注于解释由基因表达数据构建的深神经网络模型的预测。影响预测的最重要的神经元和基因被鉴定出来并与生物学知识有关。我们对CAN-CER预测的实验表明:(1)深度学习方法优于大型训练集的经典机器学习方法; (2)我们的方法产生的解释与生物学比最先进的方法更连贯; (3)我们可以对生物学家和医生的预测提供全面的解释。结论:我们提出了一种原始方法,用于从基因表达数据中对表型预测深度学习模型的生物学解释。由于模型可以找到表型和基因表达之间的关系,因此我们可以假设已鉴定的基因与表型之间存在联系。因此,解释可以导致生物学家研究新的生物学假设。
脉搏率(PR)是评估一个人健康的最重要标记之一。随着对长期健康监测的需求不断增长,使用成像光电学(IPPG)对非接触式PR估计的关注非常关注。这种非侵入性技术基于肤色细微变化的分析。尽管可以改善IPPG,但现有算法容易受到较不受约束的场景(即头部移动,面部表情和环境条件)。在本文中,我们提出了一个新颖的端到端时空网络,即X-ippgnet,直接从面部视频记录中直接进行瞬时PR估计。不像大多数现有系统一样,我们的模型从头开始学习IPPG概念,而无需结合任何先验知识或通过提取血液体积脉冲信号的提取。受Xception网络体系结构的启发,颜色通道解耦用于学习其他照相学信息信息,并概念地降低计算成本和内存重新质量。此外,X-ippGnet可以从短时间窗口(2秒)中预测脉搏率,该脉冲率具有较高且明显的脉搏率的优点。实验结果揭示了在所有条件下的高性能,包括头部运动,面部表情和肤色。我们的AP-PRACH明显优于三个基准数据集上的所有当前最新方法:MMSE-HR(MAE = 4。10; RMSE = 5。32; r = 0。85),ubfc-rppg(Mae = 4。99; RMSE = 6。26; r = 0。67),mahnob-hci(Mae = 3。17; RMSE = 3。93; r = 0。88)。