大学物理科学学院行星科学和天文学中心肯特,坎特伯雷,肯特 CT2 7NH,英国 b 莱斯特大学物理与天文学院空间研究中心,LE1 7RH,英国 c ESTEC,Keplerlaan 1,PO Box 299,NL-2200 AG 诺德维克,荷兰 d 国家天体物理研究所(INAF)空间天体物理与行星学研究所(IAPS),via Fosso del Cavaliere 100,00133 Roma,意大利 e 伦敦帝国理工学院皇家矿业学院地球科学与工程系,Prince Consort Road,南肯辛顿,伦敦 SW7 2BP,英国 f 马克斯普朗克太阳系统研究所,Justus-von-Liebig-Weg 3,D-37077 Go¨ttingen,德国 g 柏林自由大学地质科学研究所,柏林,德国 h 奥卢大学, 90014 Oulu, PO Box 3000, 芬兰 i 斯图加特大学,Raumfahrtsysteme Raumfahrtsysteme Raumfahrtzentrum Baden Württemberg, Pfaffenwaldring 29, 70569 Stuttgart, 德国 j Klaus-Tschira-Labor fur 化学化学, Institut fu海德堡大学地理科学中心,69120 海德堡,德国 k 苏黎世联邦理工学院,粒子物理和天体物理研究所,Wolfgang-Paulistrasse-27,CH-8093 苏黎世,瑞士
迫切需要发现治疗 COVID-19(由 SARS-CoV-2 病毒引起的流行病)的方法。考虑到发现、开发和临床测试的时间表,从库筛选开始的标准小分子药物发现工作流程是不切实际的。为了加快患者测试的时间,我们在此探索了在临床环境中经过一定程度测试的小分子药物(包括已批准的药物)作为 COVID-19 的可能治疗干预措施的治疗潜力。我们这个过程的动机是一个称为多药理学的概念,即可能具有治疗潜力的脱靶相互作用。在这项工作中,我们使用了深度学习药物设计平台 Ligand Design 来查询获得联邦批准或正在进行临床试验的内部小分子药物集合的多药理学概况,目的是识别预计会调节与 COVID-19 治疗相关的靶标的分子。我们努力的成果是 PolypharmDB,这是一种药物资源,以及它们在人类蛋白质组中预测的蛋白质靶标结合。挖掘 PolypharmDB 产生了预测与 COVID-19 的人类和病毒药物靶标相互作用的分子,包括与病毒进入和增殖相关的宿主蛋白以及与病毒生命周期相关的关键病毒蛋白。此外,我们收集了针对两个特定宿主靶标 TMPRSS2 和组织蛋白酶 B 的优先批准药物集合,最近显示它们的联合抑制可以阻止 SARS-CoV-2 病毒进入宿主细胞。总体而言,我们证明了我们的方法有助于快速响应,确定了 30 种优先候选药物,用于测试它们可能用作抗 COVID 药物。使用 PolypharmDB 资源,可以在一个工作日内为新发现的靶标确定重新利用的候选药物。我们正在免费向合作伙伴提供我们确定的分子的完整列表,以便合作伙伴能够对它们的功效进行体外和/或临床测试。关键词:SARS-CoV-2 病毒、COVID-19、冠状病毒、TMPRSS2、组织蛋白酶 B、宿主-靶标、多药理学、脱靶相互作用 缩写:SARS-CoV-2:严重急性呼吸综合征相关冠状病毒 COVID-19:冠状病毒病-2019 3CLpro:木瓜蛋白酶样蛋白酶 PLpro:主要蛋白酶 RdRp:非结构蛋白 ACE2:血管紧张素转换酶 2 TMPRSS2:跨膜蛋白酶丝氨酸 2
文章标题:抗击 COVID-19:人工智能技术与挑战 作者:Nikhil Patel[1]、Sandeep Trivedi[2]、Jyotir Moy Chatterjee[3] 所属机构:毕业于杜比克大学,联系电子邮件 ID:Patelnikhilr88@gmail.com[1],IEEE 会员,毕业于 Technocrats Institute of Technology,联系电子邮件 ID:sandeep.trived.ieee@gmail.com[2],尼泊尔加德满都佛陀教育基金会[3] Orcid id:0000-0001-6221-3843[1]、0000-0002-1709-247X[2]、0000-0003-2527-916X[3] 联系电子邮件:sandeep.trived.ieee@gmail.com 许可信息:本作品已以开放获取形式发表根据 Creative Commons 署名许可 http://creativecommons.org/licenses/by/4.0/,允许在任何媒体中不受限制地使用、分发和复制,前提是正确引用原始作品。条件、使用条款和出版政策可在 https://www.scienceopen.com/ 找到。预印本声明:本文为预印本,尚未经过同行评审,正在考虑并提交给 ScienceOpen Preprints 进行公开同行评审。DOI:10.14293/S2199-1006.1.SOR-.PPVK63O.v2 预印本首次在线发布:2022 年 7 月 25 日 关键词:COVID-19、SVM、神经网络、NLP、数学建模、高斯模型、疫情防控
电化学电池是我们社会中无处不在的设备。当用于关键任务应用时,在高度变化的操作条件下准确预测其放电终止的能力至关重要,以支持运营决策并充分利用整个电池的使用寿命。虽然有充电和放电阶段潜在过程的准确预测模型,但老化建模仍然是一个悬而未决的挑战。这种缺乏理解通常会导致模型不准确,或者每当电池老化或其条件发生重大变化时,就需要耗时的校准程序。这对在现实世界中部署高效、强大的电池管理系统构成了重大障碍。在本文中,我们介绍了 Dynaformer,这是一种新颖的深度学习架构,它能够同时从有限数量的电压/电流样本推断老化状态,并以高精度预测真实电池的全电压放电曲线。在评估的第一步中,我们调查了所提出的框架在模拟数据上的性能。在第二步中,我们证明了只需进行少量微调,Dynaformer 就能弥补模拟与从一组电池收集的实际数据之间的差距。所提出的方法能够以可控且可预测的方式利用电池供电系统直至放电结束,从而显著延长运行周期并降低成本。
深度学习方法有可能减轻放射科医生处理繁琐的,耗时的任务,例如检测和细分病理病变[1],但是在医学成像的背景下对神经网络的培训面临着主要的挑战:它们需要训练大量图像,因为这是很难获得的,因为在许多方面都可以限制医疗信息,并且由于许多方面的范围限制了其他方面的范围。此外,虽然在世界各地的医院数据库中可以提供相对较大的医学图像,但这些图像是未标记的,并且不同的机构以派遣和不均匀的方式保存医疗图像,这使得它们在较大的数据库中收集它们。在这种情况下,从头开始生成医学图像的方法可能引起人们的极大兴趣。生成建模是机器学习的一个子字段,它在产生新的高质量自然图像(例如面部照片[2])方面具有令人印象深刻的精力[2],并应用于语音综合[3]和磁共振图像重建等任务[4]。如果可以教导生成模型来产生现实且多样化的新医学图像,那么它们将具有很有吸引力的潜力,可以显着增加可用于深神经网络培训的图像数量,因此可以帮助提高这些网络的准确性[5-7]。
使用机器学习(ML)算法在制造过程中嵌入的传感器内部嵌入的信息的进步和识别,以更好地决策成为构建数据驱动的监视系统的关键推动因素。在激光粉床融合(LPBF)过程中,基于数据驱动的过程监视正在广受欢迎,因为它允许实时组件质量验证。加上制造零件的实时资格具有重要的优势,因为可以降低传统的生产后检查方法的成本。此外,可以采取纠正措施或构建终止以节省机器时间和资源。然而,尽管在满足LPBF流程中的监视需求方面取得了成功的发展,但由于不同的过程空间,在处理来自激光材料互动的数据分布的变化时,对ML模型在决策方面的鲁棒性进行了更少的研究。受到ML中域适应性的想法的启发,在这项工作中,我们提出了一种基于深度学习的无监督域适应技术,以解决由于不同的过程参数空间的数据分布的转移。在两个不同的316 L不锈钢粉末分布(> 45 µm和<45 µm)上获得了从LPBF过程区域到三个机制到三个方案的声学发射区到三个方案的声波形式。对应于用不同激光参数处理的粉末分布的声波形的时间和光谱分析显示,数据分布中存在偏移,随后用建议的无监督域适应技术对其进行处理,以具有可以普遍化的ML模型。进一步,两个分布之间提议的方法的预测准确性表明,不受欢迎地适应新环境的可行性并改善了ML模型的推广性。
超越标准模型(BSM)计算和参数化的不断增长的生态系统已经开发了在广泛的可能模型上制造定量跨案例的系统方法,尤其是具有可控的不确定性。在本演讲中,我们强调了不确定性量化语言(UQ)如何提供有用的指标来评估BSM和相关模型之间的统计重叠和差异。我们利用了近期的机器学习(ML)发展中的深度学习(EDL)来使UQ在模型歧视环境中分离数据(aletoric)和知识(认知)不确定性。我们构建了几种潜在的BSM动机场景,用于与深度无弹性散射中的核子的异常电子相互作用(AEWI)相互作用(AEWI)(aewi),并将其定量地映射为与CT18 PDF的蒙特卡洛复制品一起示范,用于驱动CT18 PDF。
由于其有效的性能,卷积神经网络(CNN)和视觉变压器(VIT)架构已成为解决计算机视觉任务的标准。此类架构需要大量的数据集,并依靠卷积和自我注意操作。在2021年,MLP-Mixer出现了,与CNN和VIT相比,仅依赖于多层感知器(MLP)并取得极具竞争力的结果。尽管在计算机视觉任务中表现良好,但MLP混合体架构可能不适合图像中的精制功能提取。最近,提出了Kolmogorov-Arnold网络(KAN)作为MLP模型的有希望的替代品。kans有望提高与MLP相比的准确性和可解释性。因此,目前的工作旨在设计一种新的基于混音器的架构,称为Kan-Mixers,使用KAN作为主要层,并根据几个性能指标在图像分类任务中评估其性能。作为主要结果,Kan-Mixers模型在时尚摄影和CIFAR-10数据集中优于MLP,MLP-Mixer和KAN模型,分别为0.9030和0.9030和0.6980,分别为平均精度。
