DNAJC6 编码辅助蛋白,这是一种参与突触前末端网格蛋白介导的内吞作用 (CME) 的辅助伴侣蛋白。DNAJC6 的双等位基因突变会导致一种复杂的早发性神经退行性疾病,其特征是儿童时期迅速进展的帕金森病-肌张力障碍。该疾病通常与其他神经发育、神经和神经精神特征有关。目前,尚无针对这种疾病的疾病改良治疗方法,导致发病率高且过早死亡的风险高。为了研究儿童期发病的 DNAJC6 帕金森病的潜在疾病机制,我们从三名携带致病性功能丧失 DNAJC6 突变的患者体内生成了诱导性多能干细胞 (iPSC),随后开发了一种中脑多巴胺能神经元疾病模型。与年龄匹配和 CRISPR 校正的同源对照相比,神经元细胞模型显示出疾病特异性辅助蛋白缺乏以及突触小泡循环和稳态紊乱。我们还观察到影响腹侧中脑模式和神经元成熟的神经发育失调。为了探索病毒载体介导的基因治疗方法的可行性,用慢病毒 DNAJC6 基因转移处理 iPSC 衍生的神经元培养物,从而恢复辅助蛋白表达并挽救 CME。我们的患者衍生神经元模型提供了对辅助蛋白缺乏的分子机制的更深入见解,并为开发有针对性的精准治疗方法提供了强大的平台。
妊娠期高血糖症的特征是妊娠期间血糖水平升高,是各种胎儿并发症的重要风险因素,尤其会影响胎儿发育和神经系统结果。孕妇高血糖会扰乱胎儿的正常发育,导致一系列先天性异常,包括神经管缺陷 (NTD) 和其他全身畸形。这种情况在患有糖尿病或妊娠期糖尿病 (GDM) 的女性中最为常见,这会在关键发育窗口期间造成高血糖的宫内环境,从而损害胎儿器官发生。与妊娠期高血糖症相关的最令人担忧的结果之一是神经管缺陷 (NTD) 的发展,这是一种严重的大脑和脊髓出生缺陷。这些缺陷是由于神经管在胚胎发育的早期阶段(通常在妊娠后 28 天内)未能正常闭合而发生的。研究表明,孕妇高血糖会增加氧化应激和炎症反应,从而损害细胞过程并导致此类先天畸形。1–3
图 2. 示意图,说明评估长程屏蔽能量对带电缺陷的 DFT 超胞计算的贡献。 (a) 带电荷 q 的体缺陷具有无限延伸的电介质屏蔽,内接正方形表示计算超胞的范围。 (b) DFT 超胞将整个净电荷 q 限制在超胞平行六面体内,通过从超胞边缘抽取电子来屏蔽近缺陷区域,从而对边缘区域进行去屏蔽。 (c) 等效体积球体,半径为 R vol ,需要围绕该球体评估长程屏蔽能量。 (d) 该半径减少了 R skin 以解释未屏蔽的晶胞体积,从而得到了由 R Jost 定义的 Jost 经典电介质屏蔽。
摘要:玻璃纤维增强聚合物(GFRP)被广泛使用,并在现代社会中起着重要作用。GFRP的多层结构可以导致生产和服务过程中的分层缺陷,这可能会对设备的完整性和安全性产生重大影响。因此,在设备服务过程中监视这些分层缺陷很重要,以评估它们对设备性能和寿命的影响。微波成像测试具有高灵敏度和非接触性质,显示出有望作为检测GFRPS中分层缺陷的潜在方法。然而,目前,关于该场中缺陷图像的定量表征的定量表征有限。为了实现视觉定量非损害测试(NDT),我们提出了与GFRP中分层缺陷的2D成像可视化和定量表征方法,并实现了视觉检测和定量检测的组合。我们构建了一个微波测试实验系统,以验证所提出的方法的有效性。实验的结果表明该方法的有效性和创新能力可以有效地检测GFRP内部0.5 mm厚度的所有分层缺陷,其准确性很高,2D成像的信噪比(SBR)可以达到4.41 dB,位置的定量误差在0.5 mm内,并且区域内的相对误差在0.5 mm之内,相对误差为11%。
摘要:我们提出了拓扑电荷的持续定义,以描绘光子晶体板中任何谐振衍射阶的极化缺陷,无论它们是辐射的或evane的。通过使用这种广义定义,我们研究了整个布里鲁因区域的极化缺陷的起源和保护。我们发现,由于布里鲁因区域折叠而引起的模式横梁有助于整个布里渊区的极化缺陷的出现。这些极化缺陷的事件始终源自在布里鲁因区中心或边缘固定的线变性的自发对称性断裂,或者是由意外的Bloch带交叉点引起的频段耦合。与Bloch陈述不同,两极分化缺陷在不绑定的动量空间中生存和进化,从而遵守了局部保护定律,这是Stokes定理的直接结果,但总电荷数量无数。
固态主体中的原子状缺陷是开发量子信息系统的有希望的候选者,但尽管它们非常重要,目前正在研究的主体基底/缺陷组合几乎都是偶然发现的。在这里,我们通过对材料计划数据库中的所有条目应用四阶段数据挖掘和手动筛选过程,系统地评估主体材料的适用性,并通过基于文献的实验确认带隙值。我们确定了总共 541 种可行的主体(16 种一元和 74 种二元)用于引入量子缺陷并可能用于量子信息系统。这比已知的无机相总数减少了显著(99.57%),并且针对特定应用应用额外的选择标准将进一步减少它们的数量。概述的筛选原则可以轻松应用于以前未实现的相和其他具有重要技术意义的材料系统。
神经退行性疾病(NDDS)和其他与年龄有关的疾病已通过一组关键的病理标志在经典上定义。这些标志中的两个,细胞周期失调(CCD)和核质转运(NCT)缺陷,长期以来一直在争论为因果关系,在加速衰老的病理学中是因果关系。具体而言,已证明有丝分裂后神经元中异常细胞周期活化会触发神经元细胞死亡途径和细胞衰老。此外,已经观察到NCT在衰老和神经变性过程中逐渐失调,其中增加了核蛋白的亚细胞再分配(例如TAR DNA-结合蛋白43(TDP43))对细胞质的主要驱动力是许多NDDS的主要驱动力。然而,NCT缺陷的功能意义是作为病理学的主要驱动因素或后果,以及细胞周期机械的重新分布如何促进神经变性,尚不清楚。在这里,我们描述了对进口素β进口的药理抑制能够在丝分裂神经元细胞系和有丝分裂后原发性神经元体外扰动细胞周期机制。以核进口缺陷为特征的运动神经元疾病的NEMF R86S小鼠模型,进一步概括了有丝分裂细胞系中CCD的标志,在体外和有丝分裂后的原发性神经元中以及体内脊柱运动神经元中。观察到的CCD与NDDS中神经元细胞死亡和细胞衰老中观察到的转录和表型失调一致。在一起,这些证据表明,导致CCD的核进口途径受损可能是神经变性中病理学的常见驱动力。
范德华材料中的旋转缺陷为推进量子技术提供了有前途的平台。在这里,我们提出并演示了一种基于宿主材料的同位素工程的强大技术,以确切地提高嵌入式自旋缺陷的相干性能。专注于六角硼(HBN)中最近发现的负电荷硼空位中心(V B),我们在同位素上种植同位素纯化的H 10 B 15 N晶体。与HBN中的V b相比,同位素的自然分布与同位素的自然分布相比,我们观察到较窄且拥挤的V B旋转过渡以及延长的相干时间t 2和松弛时间t 1。对于量子传感,在我们的H 10 B 15 N样品中的V B中心在DC(AC)磁场敏感性中表现出4(2)个因子。对于其他量子资源,V B高级别水平的个体可寻址性实现了对三个最近的邻居15 N核自旋的动态极化和相干控制。我们的结果证明了同位素工程对增强HBN中量子自旋缺陷的特性的力量,并且可以很容易地扩展到改善广泛的范德华材料家族中的自旋Qub。
摘要 与传统电路相比,量子电路对外部波动表现出前所未有的敏感性,在毫米大小的区域中,只需一个原子缺陷就能完全破坏设备性能。因此,为了提高设备一致性,必须找到减少缺陷数量的方法,从而降低实现容错大规模纠错量子计算的硬件门槛。鉴于这些缺陷的隐蔽性,理解它们所需的材料科学目前处于未知领域,必须开发新技术来将材料科学的现有能力与超导量子电路界确定的需求联系起来。在本文中,我们概述了表征与超导量子电路相关的材料缺陷的化学和结构特性的方法。我们介绍了最近的发展,从在操作技术(其中量子电路用作缺陷本身的探测器)到原位分析技术和成熟的非原位材料分析技术。量子电路社区现在越来越多地探索后者,以将特定材料特性与量子比特性能关联起来。我们重点介绍一些特定的技术,这些技术如果得到进一步发展,将特别有前景,并将为未来的量子材料分析技术工具箱做出贡献。
更高形式的对称性是对物质拓扑阶段进行分类的宝贵工具。然而,由于存在拓扑缺陷,相互作用多体系统中出现的高色对称性通常不准确。在本文中,我们开发了一个系统的框架,用于建立具有近似更高形式对称性的有效理论。我们专注于连续的u(1)q形式对称性和研究各种自发和显式对称性破坏的阶段。我们发现了此类阶段之间的双重性,并突出了它们在描述动态高素质拓扑缺陷的存在中的作用。为了研究物质这些阶段的平衡性动力学,我们制定了各自的流体动力学理论,并研究了激发的光谱,表现出具有更高形式的电荷松弛和金石松弛效应。我们表明,由于涡流或缺陷的增殖,我们的框架能够描述各种相变。这包括近晶晶体中的熔融跃迁,从极化气体到磁流失动力学的血浆相变,旋转冰跃迁,超流体向中性液体转变以及超导体中的Meissner效应。