预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此版本的版权持有人于2025年2月17日发布。 https://doi.org/10.1101/2024.11.29.626080 doi:Biorxiv Preprint
保留所有权利。未经许可就不允许重复使用。永久性。预印本(未经Peer Review认证)是作者/资助人,他已授予Medrxiv的许可证,以在2025年2月18日发布的此版本中显示在版权所有者中。 https://doi.org/10.1101/2025.02.14.25322283 doi:medrxiv preprint
1在美国德克萨斯州休斯敦休斯敦市卫理公会研究所神经外科中心神经病室中心内的DNA维修研究部; vprovasek@houstonmethodist.org(v.e.p。 ); mkodavati@houstonmethodist.org(M.K。 ); whb.bio@gmail.com(H.W.) 2,德克萨斯农工大学,德克萨斯州大学站,德克萨斯大学77843,美国3 INSERM,UMR-S1118,MéCanismesCentraux etpériquesde laneuroodégénénénénénénénénénénénénénénénénénénénénedede de strasbourg,crbs,crbs,crbs,crbs,67000 strasberg,frances,弗朗斯,弗朗斯,弗朗西斯; woting.guo@inserm.fr 4 VIB,大脑与疾病研究中心,比利时3000卢文5卢文5卢文脑研究所(LBI),比利时3000卢文6干细胞研究所,开发与再生部,Ku Leuven,3000 Leuven,Belgium,Belgium; ludo.vandenbosch@kuleuven.be Be 7微生物学和免疫学系,德克萨斯大学医学分公司,加尔维斯顿,德克萨斯州77555,美国; sboldogh@utmb.edu 8美国德克萨斯州休斯敦休斯顿卫理公会研究所神经外科部; gbritz@houstonmethodist.org 9美国纽约市威尔康奈尔医学院神经外科部,美国10065,美国 *通信:mlhegde@houstonmethodist.org1在美国德克萨斯州休斯敦休斯敦市卫理公会研究所神经外科中心神经病室中心内的DNA维修研究部; vprovasek@houstonmethodist.org(v.e.p。); mkodavati@houstonmethodist.org(M.K。); whb.bio@gmail.com(H.W.)2,德克萨斯农工大学,德克萨斯州大学站,德克萨斯大学77843,美国3 INSERM,UMR-S1118,MéCanismesCentraux etpériquesde laneuroodégénénénénénénénénénénénénénénénénénénénénedede de strasbourg,crbs,crbs,crbs,crbs,67000 strasberg,frances,弗朗斯,弗朗斯,弗朗西斯; woting.guo@inserm.fr 4 VIB,大脑与疾病研究中心,比利时3000卢文5卢文5卢文脑研究所(LBI),比利时3000卢文6干细胞研究所,开发与再生部,Ku Leuven,3000 Leuven,Belgium,Belgium; ludo.vandenbosch@kuleuven.be Be 7微生物学和免疫学系,德克萨斯大学医学分公司,加尔维斯顿,德克萨斯州77555,美国; sboldogh@utmb.edu 8美国德克萨斯州休斯敦休斯顿卫理公会研究所神经外科部; gbritz@houstonmethodist.org 9美国纽约市威尔康奈尔医学院神经外科部,美国10065,美国 *通信:mlhegde@houstonmethodist.org2,德克萨斯农工大学,德克萨斯州大学站,德克萨斯大学77843,美国3 INSERM,UMR-S1118,MéCanismesCentraux etpériquesde laneuroodégénénénénénénénénénénénénénénénénénénénénedede de strasbourg,crbs,crbs,crbs,crbs,67000 strasberg,frances,弗朗斯,弗朗斯,弗朗西斯; woting.guo@inserm.fr 4 VIB,大脑与疾病研究中心,比利时3000卢文5卢文5卢文脑研究所(LBI),比利时3000卢文6干细胞研究所,开发与再生部,Ku Leuven,3000 Leuven,Belgium,Belgium; ludo.vandenbosch@kuleuven.be Be 7微生物学和免疫学系,德克萨斯大学医学分公司,加尔维斯顿,德克萨斯州77555,美国; sboldogh@utmb.edu 8美国德克萨斯州休斯敦休斯顿卫理公会研究所神经外科部; gbritz@houstonmethodist.org 9美国纽约市威尔康奈尔医学院神经外科部,美国10065,美国 *通信:mlhegde@houstonmethodist.org
越来越多的证据表明,构成微生物组的人类肠道细菌与几种神经退行性疾病有关。在几项研究中发现了帕金森氏病(PD)和阿尔茨海默氏病(AD)患者的细菌种群的失衡。这种营养不良很可能会降低或增加分别具有保护性或有害人体的微生物组衍生的分子,并通过所谓的“肠脑轴”传达给大脑的这些变化。微生物组衍生的分子Queuine是一种富含大脑中的核酶,仅由细菌产生,并由人类通过其肠道上的表现来挽救。Queuine用枪支抗密码子在TRNA的Wobble位置(位置34)取代鸟嘌呤,并促进有效的细胞质和线粒体mRNA翻译。Queuine耗竭会导致蛋白质的折叠和激活,并激活小鼠和人类细胞中内质网应激和展开的蛋白质反应途径。蛋白质聚集和线粒体障碍通常与神经功能障碍和神经变性有关。为了阐明女王是否可以促进蛋白质折叠,并防止导致蛋白质病的聚集和线粒体缺陷,我们在几种化学合成的Queuine STL-101中测试了几种化学合成的女性STL-101的作用。用STL-101预处理神经元后,我们观察到高磷酸化的α-突触核蛋白的降低显着降低,α-突触核蛋白的标记是灰核核疗法的PD模型中α-突出蛋白聚集的标志物,并且在Accute and Actau consation and actau pyphosphoration中降低了Actuce and Actau phossephose contau pysease contau pysepy pd。此外,在AD模型以及PD的神经毒性模型中,在用STL-101预处理的细胞中发现了神经元存活的相关增加。测量180个神经健康个体血浆中的queuine表明健康的人类维持皇后区的保护水平。我们的工作已经确定了女性在神经保护中的新作用,从而发现了神经系统疾病中STL-101的治疗潜力。
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此版本的版权持有人于2025年2月14日发布。 https://doi.org/10.1101/2025.02.13.637069 doi:Biorxiv Preprint
微RNA(miRNA)是通过mRNA的降解或翻译抑制来调节基因表达的短(〜21 nt)非编码RNA。积累证据表明miRNA调节在多种神经退行性(ND)疾病的发病机理中的作用,例如,例如阿尔茨海默氏病,帕金森氏病,帕金森氏病,肌萎缩性侧面硬化症和亨廷顿病(HD)。几项旨在探讨miRNA调节在NDS中的作用的系统级别研究,但这些研究仍然具有挑战性。该问题的一部分可能与缺乏足够丰富或同质的数据有关,例如时间序列或在模型系统或人类生物样本中获得的细胞类型的数据,以说明上下文依赖性。该问题的一部分也可能与与miRNA和mRNA数据的准确系统级建模相关的方法学挑战有关。在这里,我们批判性地回顾了用于分析表达数据的机器学习方法的主要家族,强调了使用形状分析概念作为精确建模高度尺寸的miRNA和mRNA数据的添加价值,例如在研究HD过程中获得的概念,并详细介绍了这些概念和方法的潜在方法和方法来对这些概念和方法进行建模复杂的复杂信息数据。
以神经元结构和功能进行性丧失为特征的神经退行性疾病是现代最具破坏性的健康挑战之一(Gadhave等,2024)。疾病,例如阿尔茨海默氏病(AD),帕金森氏病(PD),多发性硬化症(MS)和肌萎缩性侧面硬化症(ALS),很少有常见的病理标志:神经变性,神经变性,神经蛋白流量,神经蛋白流量和障碍脑脑完整性/连接性/连接性/连接性(COVA等)。中枢神经系统(CNS)完整性中免疫介导的反应的这种复杂相互作用已成为神经元损伤和疾病进展的关键贡献者(Jellinger,2010年)。对该主题的研究越来越多,强调了揭示神经素浮游机制和恢复大脑稳态的重要性,这将为创新的治疗策略铺平道路。这个研究主题,标题为“神经因浮肿和神经退行性疾病),构成了主要研究人员的14个有见地的贡献。共同探索了神经素浮游,生物标志物的诊断潜力以及有希望的治疗途径的分子和细胞基础。提供了有关外围衍生的危险因素(例如2型糖尿病(T2DM),骨关节炎和冠状病毒病2019(CoVID-19)的其他见解。本社论强调了本研究主题中介绍的关键主题和发现。
摘要 - 在这项研究中,我们探讨了使用频谱图代表了用于评估神经退化性疾病的手写信号,包括42个健康对照(CTL),35名患有帕金森氏病的受试者(PD),21例患有阿尔茨海默氏病(AD)和15例患有帕克森病的疾病模仿(PDM)。我们使用基于多通道的固定尺寸和基于框架的频谱图应用了CNN和CNN-BLSTM模型进行二进制分类。我们的结果表明,手写任务和频谱渠道组合会显着影响分类性能。AD与CTL的F1得分最高(89.8%),而PD与CTL达到74.5%,PD与PDM的得分为77.97%。CNN始终优于CNN-BlstM。测试了不同的滑动窗口长度,以构建基于框架的频谱图。一个1秒的窗口最适合AD,更长的Windows改进的PD分类,并且窗口长度对PD与PDM的影响很小。索引项 - 手写,神经退行性疾病,固定尺寸频谱图,基于框架的频谱图,通道。
开发神经退行性临时媒体的解剖学验证协议:,Winifred Trotman 3,Francisco Javier Romero Molina 5,JoséCarlosBlood 5,Jimenez Sea of Jimenez 5,Pillar Mars Rabal Mars Rabal 5,Prieto 5,Prieto 5,Ricardo 5,Ricardo insaul 5,Ricardo insaul 5,la la la la la la la la em em em em em em em em em。Wisse 7
血管危险因素(例如高血糖和血小板过度激活)在2型糖尿病(T2D)中起着重要作用,这是AD的危险因素。我们研究了105名认知未损害的成年人(包括21个淀粉样蛋白的成年人(Aβ -NEG对照组),包括21名淀粉样蛋白的老年人(Aβ -NEG对照组),以及45个淀粉样蛋白稳态的患者A A A A A AA APAiria Impair Impair或Dimpimair Impair或Dimpimair Impair(包括21例),我们研究了105名认知未损害的成年人的血小板水平,血小板计数;平均血小板体积(MPV)和AD神经成像标记之间的关系。我们评估了两个与T2D相关的血管危险因素的组间差异,然后对血液参数与多模式神经影像学(结构MRI,18 F-氟脱氧葡萄糖和18 F-氟-pet)之间的关联在Cogni-Inty-Unical Imperigancy Undimprimpightimpiraightimpightim Imprighightimpiraightimpigh的成年患者中使用了β-POPSOS,并使用了β-pospos。与β -neg对照组相比,β -POS患者的血小板计数较低和MPV较高。在认知无影响的成年人中,血糖水平升高与广告敏感区域的萎缩和低代谢有关。在β -Pos paptent中,MPV增加与内嗅和周围皮层萎缩有关。健康个体的亚临床但高血糖水平和AD患者的MPV水平与广告敏感大脑区域的神经变性有关,而与淀粉样蛋白沉积无关。©2022作者。由Elsevier Inc.出版这是CC BY-NC-ND许可(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章