2建模量子信息。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 2.1关于符号的一般评论。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 2.2线性操作员和事件。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13 2.2.1希尔伯特空间和线性操作员。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。13 2.2.2事件和措施。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16 2.3功能和状态。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17 2.3.1跟踪和痕迹级运算符。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。18 2.3.2状态和密度运算符。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。19 2.4多目标系统。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。20 2.4.1张量产品空间。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。20 2.4.2可分离状态和纠缠。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。22 2.4.3纯化。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>23 2.4.4经典量子系统。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>23 2,5在正运算符上的功能。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>24 2.6量子通道。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>25 2.6.1完全有限的地图。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>26 26.2量子通道。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。26 2.6.3捏合和开发通道。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。28 2.6.4通道表示。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。29 2.7背景和进一步阅读。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。30
我们描述了一种有效的数值方法,用于模拟存在失相和衰减的情况下相互作用的自旋系综的动力学。该方法基于孤立系统的离散截断维格纳近似,将自旋系综的平均场动力学与离散初始自旋值的蒙特卡罗采样相结合,以解释量子关联。在这里,我们展示了如何通过将确定性平均场演化替换为随机过程来将这种方法推广到耗散自旋系统,该过程描述了相干性和群体的衰减,同时保留了每个自旋的长度。我们展示了该技术在模拟非经典自旋压缩效应或具有 10 5 个相互作用的两级系统的腔 QED 模型的动力学和稳态中的应用。这为在现实实验室条件下对各种量子光学实验或固态自旋系综进行精确的实尺度模拟提供了可能性。
与环境耦合的一般多体系统由于退相干而失去量子纠缠,并演变为仅具有经典相关性的混合状态。在这里,我们表明测量可以稳定开放量子系统内的量子纠缠。具体而言,在边界处失相的随机单元电路中,我们从数值和分析上发现,以较小的非零速率进行的投影测量会导致系统内出现 L 1 / 3 幂律缩放纠缠负性的稳定状态。使用对随机环境中定向聚合物统计力学模型的解析映射,我们表明幂律负性缩放可以理解为由于随机测量位置而导致的 Kardar-Parisi-Zhang (KPZ) 波动。进一步增加测量速率会导致相变到面积律负性相,这与无退相干的受监控随机电路中的纠缠转变具有相同的普遍性。
纠缠是高级量子技术的主要资源,它可以在大距离内进行安全交换信息。能量时纠缠因其在基于纤维的量子通信中的有益鲁棒性而特别有吸引力,并且可以在弗朗森干涉仪中证明。我们在连续波动激发下报告了来自共鸣驱动的Biexciton级联反应的Franson型干扰。我们的测量结果产生的(73±2)%的最大可见性超过了违反贝尔不平等的限制(70.7%)的最大可见性。尽管无法满足无漏洞的违规行为,但我们的工作表明了关于这种系统的未来作品的有希望的结果。此外,我们对驾驶强度影响的系统研究表明,脱落机制和偏离级联排放的偏差对测得的能量时纠缠的程度产生了重大影响。
09:00 – 09:25 利用电场研究超导量子比特中的缺陷 Jürgen Lisenfeld,卡尔斯鲁厄理工学院 09:25 – 09:50 我们能否进一步减少超导量子振荡器中的耗散和失相? Ioan M. Pop,卡尔斯鲁厄理工学院 09:50 – 10:15 声子阱可降低超导电路中非平衡准粒子的密度 Francesco Valenti,卡尔斯鲁厄理工学院 10:15 – 10:20 参观 PTB 实验室的一些细节 10:20 – 10:50 咖啡休息 10:50 – 11:15 紧凑型 3D 量子存储器的最佳控制 Frank Deppe,加兴理工大学 / 慕尼黑理工大学和 MCQST 大学 11:15 – 11:40 三波混频行波约瑟夫森参量放大器的开发挑战 Christoph Kissling,不伦瑞克 PTB
09:00 – 09:25 利用电场研究超导量子比特中的缺陷 Jürgen Lisenfeld,卡尔斯鲁厄理工学院 09:25 – 09:50 我们能否进一步减少超导量子振荡器中的耗散和失相? Ioan M. Pop,卡尔斯鲁厄理工学院 09:50 – 10:15 声子阱可降低超导电路中非平衡准粒子的密度 Francesco Valenti,卡尔斯鲁厄理工学院 10:15 – 10:20 参观 PTB 实验室的一些细节 10:20 – 10:50 咖啡休息 10:50 – 11:15 紧凑型 3D 量子存储器的最佳控制 Frank Deppe,加兴理工大学 / 慕尼黑理工大学和 MCQST 大学 11:15 – 11:40 三波混频行波约瑟夫森参量放大器的开发挑战 Christoph Kissling,不伦瑞克 PTB
通用的多体系统与环境结合,由于腐烂而失去了量子纠缠,并且仅具有经典相关性而发展到混合状态。在这里,我们表明测量值可以稳定开放量子系统中的量子纠缠。具体而言,在边界处的随机统一电路中,我们在数值和分析上都发现以较小的非呈速率进行的投影测量结果导致稳定状态,l 1 = 3个系统内的powerlaw范围缩放纠缠的否定性。在随机环境中使用分析映射到定向聚合物的统计力学模型,我们表明,由于随机测量位置,幂律负缩放量表可以理解为Kardar-Parisi-Zhang波动。进一步提高测量率会导致相位过渡到区域律负阶段,该阶段与受监测的随机电路中无腐蚀性的纠缠过渡的通用性相同。
我们对由许多相同的量子单元组成的量子电池在噪声下的能量回收效率进行了理论分析。虽然利用量子效应加速电池充电过程的可能性已被广泛研究,但为了将这些想法转化为工作设备,评估量子电池元件在接触环境噪声时存储相的稳定性至关重要。在这项工作中,我们将这个问题形式化,引入了一系列操作上定义良好的性能系数(工作电容和最大渐近工作/能量比),这些性能系数衡量了从由大量相同和独立元素(量子单元或 q 单元)组成的量子电池模型中回收有用能量所能达到的最高效率。对于能量存储系统经历相位失调和去极化噪声的情况,给出了这些量的明确评估。
09:00 – 09:25 利用电场研究超导量子比特中的缺陷 Jürgen Lisenfeld,卡尔斯鲁厄理工学院 09:25 – 09:50 我们能否进一步减少超导量子振荡器中的耗散和失相? Ioan M. Pop,卡尔斯鲁厄理工学院 09:50 – 10:15 声子阱可降低超导电路中非平衡准粒子的密度 Francesco Valenti,卡尔斯鲁厄理工学院 10:15 – 10:20 参观 PTB 实验室的一些细节 10:20 – 10:50 咖啡休息 10:50 – 11:15 紧凑型 3D 量子存储器的最佳控制 Frank Deppe,加兴理工大学 / 慕尼黑理工大学和 MCQST 大学 11:15 – 11:40 三波混频行波约瑟夫森参量放大器的开发挑战 Christoph Kissling,不伦瑞克 PTB
09:00 – 09:25 利用电场研究超导量子比特中的缺陷 Jürgen Lisenfeld,卡尔斯鲁厄理工学院 09:25 – 09:50 我们能否进一步减少超导量子振荡器中的耗散和失相? Ioan M. Pop,卡尔斯鲁厄理工学院 09:50 – 10:15 声子阱可降低超导电路中非平衡准粒子的密度 Francesco Valenti,卡尔斯鲁厄理工学院 10:15 – 10:20 参观 PTB 实验室的一些细节 10:20 – 10:50 咖啡休息 10:50 – 11:15 紧凑型 3D 量子存储器的最佳控制 Frank Deppe,加兴理工大学 / 慕尼黑理工大学和 MCQST 大学 11:15 – 11:40 三波混频行波约瑟夫森参量放大器的开发挑战 Christoph Kissling,不伦瑞克 PTB