半导体量子点中电子自旋量子比特的相干性主要受到低频噪声的影响。在过去十年中,人们一直致力于通过材料工程来减轻这种噪声,从而大大延长了空闲量子比特的自旋失相时间。然而,人们对自旋操纵过程中环境噪声的作用(决定控制保真度)了解甚少。我们展示了一个电子自旋量子比特,其驱动演化中的相干性受到高频电荷噪声的限制,而不是任何半导体器件固有的准静态噪声。我们采用反馈控制技术来主动抑制后者,证明了砷化镓量子点中 π 翻转门保真度高达 99 . 04 0 . 23%。我们表明,驱动演化的相干性受到 Rabi 频率下的纵向噪声的限制,其频谱类似于同位素纯化硅量子比特中观察到的 1 =f 噪声。
摘要:我们研究了具有失相耗散项的开放量子系统中算子的增长,扩展了 [1] 的 Krylov 复杂性形式。我们的研究结果基于对受马尔可夫动力学控制的耗散 q 体 Sachdev-Ye-Kitaev (SYK q) 模型的研究。我们引入了“算子尺寸集中”的概念,该概念允许对大 q 极限下两组 Lanczos 系数(an 和 bn)的渐近线性行为进行图解和组合证明。我们的结果证实了大 N 极限下有限 q 中的半解析以及有限 q 和有限 N 极限下的数值 Arnoldi 迭代。因此,Krylov 复杂性在达到饱和之后呈现指数增长,而耗散强度的倒数则呈对数增长。与封闭系统结果相比,复杂性的增长受到抑制,但它限制了标准化非时间顺序相关器 (OTOC) 的增长。我们从对偶引力的角度对结果进行了合理的解释。
摘要:金属纳米结构对光学激发的响应导致局部表面等离子体(LSP)生成,并在例如量子光学和纳米光子学中驱动纳米级场限制驱动应用。Terahertz域中的现场采样对追踪此类集体激发的能力产生了巨大影响。在这里,我们扩展了此类功能,并在更相关的Petahertz域中对LSP进行直接采样。该方法允许以亚周期精度测量任意纳米结构中的LSP场。我们演示了胶体纳米颗粒的技术,并将结果与有限差分的时间域计算进行了比较,这表明可以解决等离子体激发的堆积和逐步化。此外,我们观察到了几个周期脉冲的光谱阶段的重塑,并通过调整等离激元样品来证明临时脉冲成型。该方法可以扩展到单个纳米系统,并应用于探索亚周期现象。关键字:等离激光,等离子体动力学,金纳米颗粒,Petahertz现场采样■简介
量子比特和腔之间的色散相互作用在电路和腔量子电动力学中无处不在。它描述了一个量子模式响应另一个量子模式的激发而发生的频率偏移,并且在封闭系统中必然是双向的,即互易的。在这里,我们展示了一项关于 transmon 量子比特和超导腔之间非互易色散型相互作用的实验研究,这种相互作用源于与具有破坏时间反转对称性的耗散中间模式的共同耦合。我们通过原位调整铁氧体元件的磁场偏置来表征不同程度的非互易性下的量子比特腔动力学,包括不对称频率牵引和光子散粒噪声失相。我们引入了一个用于色散状态下非互易相互作用的通用主方程模型,为与中间系统无关的观察到的量子比特腔动力学提供了紧凑的描述。我们的结果提供了一个超越非厄米汉密尔顿量和级联系统典型范式的量子非互易现象的例子。
量子通信有望实现量子信息的可靠传输、纠缠的有效分布和完全安全的密钥的生成。对于所有这些任务,我们需要确定量子信道两端的两个远程方可以实现的最佳点对点速率,而不受其本地操作和经典通信的限制,这些速率可以是无限的和双向的。这些双向辅助容量代表了无需量子中继器即可达到的最终速率。在这里,通过基于纠缠的相对熵构建上限并设计一种称为“传送拉伸”的与维度无关的技术,我们为许多基本信道建立了这些容量,即玻色子有损信道、量子限制放大器、任意维度的失相和擦除信道。特别是,我们精确地确定了影响任何量子密钥分发协议的基本速率损失权衡。我们的发现设定了点对点量子通信的极限,并为量子中继器提供了精确和通用的基准。
最近在二维材料中发现的量子发射器为量子信息集成光子器件开辟了新的前景。这些应用中的大多数都要求发射的光子是不可区分的,而这在二维材料中仍然难以实现。在这里,我们研究了利用电子束在六方氮化硼中产生的量子发射器的双光子干涉。我们在非共振激发下测量了 Hong-Ou-Mandel 干涉仪中零声子线光子的相关性。我们发现发射的光子在 3 纳秒的时间窗口内表现出 0.44 ± 0.11 的部分不可区分性,这对应于考虑不完美发射器纯度后的校正值 0.56 ± 0.11。 Hong-Ou-Mandel 可见度与后选择时间窗口宽度的相关性使我们能够估计发射器的失相时间约为 1.5 纳秒,约为自发辐射设定的极限的一半。使用 Purcell 效应和当前的 2D 材料光子学,可见度可达到 90% 以上。
量子信息处理任务需要外来量子状态作为先决条件。它们通常使用针对特定资源状态的许多不同方法制备。在这里,我们基于由随机耦合的费米子节点组成的驱动量子网络提供多功能的统一准备方案。然后,借助线性混合,将权重和相位训练以获得所需的输出量子状态,然后将这种系统的输出进行超大。我们明确表明我们的方法很健壮,可以用来创建几乎完美的最大纠缠,中午,W,集群和不和谐状态。此外,该处理包括系统中的能量衰减以及去极化和去极化。在这些嘈杂的条件下,我们表明,通过调整可控参数并为量子网络的驱动提供高度的强度,可以通过高度实现目标状态。最后,在非常嘈杂的系统中,噪声与驱动强度相当,我们通过在较大的网络中混合更多状态来展示如何集中纠缠。
将相干光学跃迁与长寿命自旋量子比特耦合的固态量子发射器对于量子网络至关重要。我们在此报告了金刚石纳米结构中单个锡空位 (SnV) 中心的自旋和光学特性。通过低温磁光和自旋光谱,我们验证了 SnV 的反演对称电子结构,识别了自旋守恒和自旋翻转跃迁,表征了跃迁线宽,测量了电子自旋寿命,并评估了自旋失相时间。我们发现,即使在纳米制造结构中,光学跃迁也与辐射寿命极限一致。自旋寿命受声子限制,指数温度缩放导致 T 1 > 10 毫秒,相干时间 T 2 在冷却至 2.9 K 时达到核自旋浴极限。这些自旋特性超过了其他反演对称色心的自旋特性,而这些色心的类似值需要毫开尔文温度。 SnV 结合了相干光学跃迁和长自旋相干性,无需稀释制冷,是可行且可扩展的量子网络应用的有希望的候选者。
将相干光学跃迁与长寿命自旋量子比特耦合的固态量子发射器对于量子网络至关重要。我们在此报告了金刚石纳米结构中单个锡空位 (SnV) 中心的自旋和光学特性。通过低温磁光和自旋光谱,我们验证了 SnV 的反演对称电子结构,识别了自旋守恒和自旋翻转跃迁,表征了跃迁线宽,测量了电子自旋寿命,并评估了自旋失相时间。我们发现,即使在纳米制造结构中,光学跃迁也与辐射寿命极限一致。自旋寿命受声子限制,指数温度缩放导致 T 1 > 10 毫秒,相干时间 T 2 在冷却至 2.9 K 时达到核自旋浴极限。这些自旋特性超过了其他反演对称色心的自旋特性,而这些色心的类似值需要毫开尔文温度。 SnV 结合了相干光学跃迁和长自旋相干性,无需稀释制冷,是可行且可扩展的量子网络应用的有希望的候选者。
N 缩放作为 Grover 的原始算法。一个自然的问题是,芝诺效应的其他表现形式是否也可以在物理现实模型中支持最佳加速(通过直接模拟应用,而不是通过支持通用门集间接实现)。在本文中,我们表明它们可以支持这种加速,无论是由于测量、退相干,还是激发态衰减为计算无用状态。我们的结果还提出了多种实现加速的方法,这些方法不依赖于芝诺行为。我们将这些算法分为三个系列,以便于对如何获得加速有条不紊的理解:一个基于相位踢动,包含绝热计算和连续时间量子行走;一个基于失相和测量;最后一个基于激发态内振幅的破坏,我们不知道任何先前的结果。这些结果表明,基于这些效应的模拟量子计算的新范式可能存在令人兴奋的机会。