稀土发射器已在集成的光学源中研究了一段时间,作为激光源[1]和带有眼镜[2,3]或聚合物[4]的波导放大器。最近,它们被整合到互补的金属氧化物半导体(CMOS)驱动或兼容的SI光子芯片中,作为激光源[5],放大器[6,7]以及调节剂[8,9]。稀土发射器为开发新的主动光学功能的可能性提供了许多可能性,该功能最初集中于第四组[10]或III-V材料[11,12]。然而,需要在硅平台上的有效掺入(例如粘结[13],掩盖沉积[5,14],额外的层[15]或蚀刻[16,17],需要复杂的处理,这对实际应用可能是昂贵且有害的。尤其是Y 2 O 3和Al 2 O 3矩阵的情况,它需要电感耦合等离子体优化的蚀刻[18-20]。在这项工作中,我们提出了稀土掺杂层微发射体的创新设计,而无需使用升降加工与脉冲激光沉积(PLD)结合使用。在通过掩模(例如g。photoresist)的升降过程中,通过蚀刻的经典结构进行了蚀刻的经典结构,但在升降过程中,将材料与沉积的材料一起清除。这种方法比蚀刻更容易,避免沿蚀刻的侧壁潜在损害。尽管非常有吸引力,但提升过程的主要缺点之一是沉积过程中的底物温度。pld允许克服这种限制。升降处理是薄层图案(例如金属)或较厚层的微电子中常规的,具有低温沉积(如溅射)[21],原子层[22]或玻璃沉积[23]。的确,如果底物温度高于200°C(即光固定剂的硬烘烤温度),则提升处理不能成功。PLD是一种通常用于
电子邮件:stephane.calvez@laas.fr 简介 原子层沉积 (ALD) 纳米厚的 Al 2 O 3 层或其他电介质层已被证实是一种有效的方法,可用于创建敏感材料封装层,防止其因周围大气中的水分和氧气含量而发生降解 [1,2]。另外,由氧气(分别是水)引起的半导体材料向绝缘体的腐蚀转变,称为干(湿)氧化,通常用于微电子和光子器件以及集成电路的制造,作为引入实现晶圆上光学路由 [3–6] 和/或电连接所需的电和/或光子限制的一种方式。特别是在硅光子器件制造中,后者的工艺通常涉及将硅层在高温或等离子体中暴露于水/氧气中,并通过厚度大于 100 nm 的 SiN x 掩模实现局部氧化保护 [3,4]。在此背景下,我们在此报告了使用 ALD 沉积的 Al 2 O 3 作为节省材料的氧化屏障以防止硅晶片的等离子诱导或高温热氧化的能力的研究。样品制备通过热 ALD 在硅晶片上沉积具有纳米厚度的 Al 2 O 3 薄膜。低压热 ALD 沉积由重复循环组成,每个循环包括 300 ms 的三甲胺铝 (TMA) 脉冲,然后在 N 2 下进行 2800 ms 的吹扫,150 ms 的水蒸气脉冲,以及在 N 2 下进行 6700 ms 的第二次吹扫。这里测试了两个沉积温度,90°C 和 150°C。使用可变角度光谱椭圆偏振法(使用 Accurion EP4 系统)测量所得层厚度。图 1 显示了 Al 2 O 3 厚度随沉积循环次数变化的记录。在 0 个循环时,测量到的厚度对应于天然氧化硅(测量到约 2 纳米)。在 15 个沉积循环之前,成核开始以异质生长(见图 1 插图)。超过 15 个循环后,沉积厚度以每循环生长率 (GPC) 0.19 纳米/循环线性增加,并且与沉积温度的依赖性较弱。随后使用紫外光刻和湿法蚀刻对 Al 2 O 3 涂层样品进行图案化,以获得具有 Al 2 O 3 保护和未保护硅区域的样品。使用稀磷酸(去离子水/H 3 PO 4 (37%) 1/1 溶液)在精确的 67°C 温度下进行层蚀刻,蚀刻速率为 30 纳米/分钟。分别用水和丙酮进行冲洗和清洁。测试了两种类型的氧化:干热氧化和等离子氧化。干热氧化方案包括在 5L/min 的 O 2 流量下从 30°C 开始线性升温(8.2°C/min),然后在 9L/min 的 O 2 流量下以 1000°C 进行恒温步骤,然后在 5L/min 的 O 2 流量下以 -16.3°C/min 的温度衰减。低压 O 2 等离子体氧化在 Sentech Si-500 设备中进行,使用 30 分钟的重复处理,其中样品受到 O 2 等离子体处理,RF 功率为 800W,基板温度保持在 100°C 以下。在这两种情况下,通过成像光谱椭圆偏振法测量处理过的样品的保护区和未保护区的氧化厚度。图 2 左侧显示,如果 Al 2 O 3 厚度大于 ~9 nm(45 个循环),则干氧化不会进行,而对于更薄的覆盖层,干氧化会减少。SEM 横截面(如图 2 中的插图所示)进一步证实了这一观察结果。类似地,观察到等离子体氧化导致氧化物生长遵循平方根定律的时间依赖性(Deal 和 Grove 模型 [7]),但对于(30 次循环)Al 2 O 3 涂层样品部分,其氧化速率降低。
在这里,我们报告了Inn纳米线太阳能电池的第一个实验证明,该电池是通过以1.78 eV的带隙能量溅射来沉积的。通过在N -Inn/ P -SI结构中添加无定形Si(A -SI)缓冲液,我们在保持其材料质量的同时,提高了所得设备的光伏性能。我们首先通过DC溅射在Si(100)上优化了Si的沉积,获得了带隙能量为1.39 eV的无定形材料。然后,我们研究了A-SI缓冲层(0 - 25 nm)对Inn纳米线对Si(100)底物的结构,形态,电气和光学性质的厚度的影响。使用15 nm缓冲液N -Inn/A-Si/P-Si纳米线异质结式太阳能电池表现出令人鼓舞的短路电流密度为17 mA/cm 2,开路电压为0.37 V,填充因子为35.5%,指向2.3%以下2.3%以下(Am 1 Sun)(AM 1.5G)(AM 1.5G)。这些工作降低了距离溅射的A-SI的组合,可以用作潜在的钝化层,而纳米结构的活性层的光捕获增强可提高溅射的III-nitride设备的光伏效率。
指定的候选人将在NRRI/ICAR的选择吸收中指示的任期期。印度规范的ABO。2符合条件和期望的候选人是出现处方日期,时间和地点的证书(入学)。bio与3个研究所一起存入该研究所可能会进行技能测试o 4董事,Icar-nrri保留了正面方面的招聘过程。5 no ta和da以任何形式出现在6个拉票中,如果当前雇用将渲染7,那么CA雇主出现在间隔8中,没有任何候选人
图 2:(a) 316L+20%WC 复合材料的 SEM 显微照片。部分溶解的 WC 碳化物(亮圆圈)均匀分散在增强基质中。(b) (a) 的特写视图,显示了部分溶解的 WC 碳化物(浅灰色)的紧邻区域以及由凝固碳化物组成的网络。(c) (a) 的另一个特写视图,重点关注熔池和 HAZ 之间的过渡及其各自的凝固碳化物。
在 Inconel 718 的激光定向能量沉积 (L-DED) 中,所制造部件的微观结构在很大程度上取决于所应用的工艺参数和由此产生的凝固条件。大量研究表明,工艺参数沉积速度和激光功率对微观结构特性(如枝晶形态和偏析行为)有重大影响。本研究调查了当线质量(从而导致的层高)保持不变时,这些工艺参数的变化如何影响微观结构和硬度。这使得能够对使用相同层数但工艺参数截然不同制造的几何相似样品进行微观结构比较。这种方法的好处是,所有样品的几何边界条件几乎相同,例如特定于层的构建高度和导热横截面。对于微观结构分析,应用了扫描电子显微镜和能量色散 X 射线光谱,并以定量方式评估结果。沿堆积方向测量了微观结构特征,包括一次枝晶臂间距、沉淀 Laves 相的分数和形态以及空间分辨的化学成分。使用半经验模型,根据一次枝晶臂间距计算发生的冷却速率。应用了其他研究人员使用的三种不同模型,并评估了它们对 L-DED 的适用性。最后,进行了显微硬度测量,以对材料机械性能的影响进行基线评估。
研究DNA寡核苷酸性能和寻找新结构识别方法是现代科学最重要的任务。相信,当人类基因组测序的成本变得足够低以实施广泛实施时,将实施个性化的医学概念[1,2]。在这种情况下,大多数现代遗传数据分析方法基于基因组测序,进而取决于检测每个核苷酸寡核苷酸增加的技术方法[1,2]。但是,应该注意的是,测序是用于寡核苷酸鉴定和分析的多核苷酸技术,而寡核苷酸序列的性能可以整体鉴定[3,4]。为此,我们需要研究寡核苷酸分子的性能,其中可能包括DNA的介电和磁性。在此之前表明,基于实验电导率数据的比较[1],核苷酸组合和寡核苷酸的长度在这些生物分子的介电性能形成中起着基本作用,因此,与1个寡核苷酸 - 1个相关的电势通道的电气序列相关的序列,从而研究了con- sns con- con- con- con- con- con- con- con- con- con- con- con- con- con- con- - 生物分子。寡核苷酸应用于SNS表面,反过来促进了总电容和电感,从而可以依靠伏特 - 安培特征研究中识别和确定其介电常数。这项研究的重点是这个问题 - 它没有声称要进行完整的寡核苷酸测序,但可以提供有关但是,由于电特性与磁性特性相互作用,因此有趣的是,是否可以使用其磁性特性通过非接触式方法研究寡核苷酸。
[1] ASTM International,《金属定向能量沉积标准指南》。2016 年,第 1-22 页。[2] S. Sreekanth,“激光定向能量沉积:工艺参数和热处理的影响”,University West,2020 年。[3] RM Mahamood,《金属和合金的激光金属沉积》。2018 年。[4] S. Sreekanth、E. Ghassemali、K. Hurtig 和 S. Joshi,“直接能量沉积工艺参数的影响”,《金属》,第 10 卷,第 1 期,第 96 页,2020 年。[5] A. Steponaviciute、A. Selskiene、K. Stravinskas、S. Borodinas 和 G. Mordas,“17-4 PH 不锈钢作为高分辨率激光金属沉积材料”,Mater. Today Proc.,第 10 卷,第 1 期,第 96 页,2020 年。 52,第 2268-2272 页,2021 年,doi:10.1016/j.matpr.2021.08.143。[6] AA Adeyemi、E. Akinlabi、RM Mahamood、KO Sanusi、S. Pityana 和 M. Tlotleng,“激光功率对激光金属沉积 17-4 ph 不锈钢微观结构的影响”,IOP Conf. Ser. Mater. Sci. Eng.,第 225 卷,第 012028 页,2017 年,doi:10.1088/1757-899x/225/1/012028。 [7] J. Tacq.,“17-4PH 钢的 L-PBF 和热处理”,2021 年。 [8] A. Ziewiec、A. Zielińska-Lipiec 和 E. Tasak,“热处理后 X5CrNiCuNb 16-4(17-4 PH)马氏体不锈钢焊接接头的微观结构”,Arch. Metall. Mater.,第 59 卷,第 3 期,第 965-970 页,2014 年,doi:10.2478/amm-2014-0162。 [9] Y. Sun、RJ Hebert 和 M. Aindow,“热处理对增材制造和锻造 17-4PH 不锈钢微观结构演变的影响”,Mater. Des.,第 59 卷,第 3 期,第 965-970 页,2014 年156,第 429-440 页,2018 年,doi:10.1016/j.matdes.2018.07.015。[10] K. Li 等人,“均质化对激光粉末床熔合制备的 17-4 PH 不锈钢沉淀行为和强化的影响”,Addit. Manuf.,第 52 卷,第 1-26 页,2022 年,doi:10.1016/j.addma.2022.102672。
纳米级过渡金属三硫属化物如 TiS 3 在基础研究和应用开发方面都表现出巨大的潜力,但它们的自下而上的合成策略尚未实现。在这里,我们探索了 TiS 3 的化学气相沉积 (CVD) 合成,其晶格各向异性使得其能够沿 b 轴优先生长,从而得到长宽比可通过生长温度调节的矩形纳米片或纳米带。所获得的纳米结构在保持与原始半导体 TiS 3 一样的光谱和结构特征的同时,表现出高电导率和超低载流子活化势垒,有望作为纳米级导体。我们的实验和计算结果表明,CVD 生长的 TiS 3 中 S 2 − 2 空位的存在是造成重 n 型掺杂直至简并能级的原因。此外,预计通过用环境中的氧原子钝化 S 2 − 2 空位可以恢复半导体性能。因此,这项工作预示着利用缺陷工程三硫属化物半导体构建纳米级电子器件的诱人可能性。