铜金属由于其低电阻率和对电子的高电阻性而高度偏爱微电子的相互作用。[1]微电子设备中最小特征的尺寸计划到2022年达到3 nm限制,[2]设定了越来越严格的需求,以使该技术沉积该设备制造的连续低电阻式CUFILMS。原子层沉积(ALD)是一种基于相互脉冲前体的领先的气相薄膜技术 - 是微电子行业的理想选择,因为它固有地提供了高度的相结合薄膜,而不是复杂的几何形状和高光谱比率结构,并且可以使用高含量比率结构,并且可以覆盖厚度较高。[3] Challenge是为了找到行业,有效和可靠的ALD
二维(2D)过渡金属二核苷(TMDC)表现出令人兴奋的半导体特性和用于晶体管,光电设备,量子信息科学和能量任务的多功能材料化学。金属有机化学蒸气沉积(MOCVD)已成为一种有前途的技术,它可以增长2D TMDC,这要归功于其在此过程中执行高温外观生长并保持稳定的前体流量的能力。首先,我将讨论我们在蓝宝石和石墨烯基板上生长2D TMDC的MOCVD过程,以及其在功能化表面或Damascene结构上低温沉积的能力。[1,2]第二,我将讨论我们在TMDC增长期间使用RE [3]和V的TMDC替代掺杂的最新进展。一些掺杂剂可以调节载体浓度,引入磁性,甚至治愈TMDC中的缺陷。第三层TMDC半导体可能会引起近室温度设备应用,因为它们的热电离能量减少了,与单层相比。i将介绍我们的外延1到3层MOS 2,由MOCVD生长的逐层和结果。,最后,使用TMD作为构建块,我们可以用固有的偶极矩创建破坏对称性的2D材料。最新结果[4,5],包括将2D WS 2和MOS 2转化为2d Janus WSSE和MOSSE以及由Janus TMD和标准TMDS组成的杂波的电荷转移研究。
摘要:果胶气凝胶,密度非常低(约0.1 g cm -3)和高比表面积(高达600 m 2 g -1),是出色的热绝缘材料,因为它们的导热率低于环境条件下的空气(0.025 w m -1 k -1 k -1)。然而,由于其内在亲水性,与水蒸气接触时果胶气凝胶塌陷,失去了超跨性能。在这项工作中,首先制作了果胶气凝胶,并研究了不同过程参数对材料结构和特性的影响。所有纯果胶气凝胶的密度低(0.04-0.11 g cm-1),高比表面积(308–567 m 2 g - 1)和非常低的热电导液(0.015-0.0.023 w m-1 k-1 k-1)。然后,使用不同的反应持续时间(2至24 h),通过甲基三甲氧基硅烷的化学蒸气沉积果胶疏水凝胶。通过在气候腔中进行调节(25℃,80%的相对湿度),记录了疏水性对材料特性的影响,尤其是对热导率的影响。疏水导致与整洁的果胶气凝剂相比,导热率的增加。mTMS沉积16小时有效地在潮湿的环境(接触角115°)和稳定材料特性(0.030 w m -1 k -1)和测试周期为8个月的测试周期中没有波动的材料(0.030 w m -1 k -1),有效地溶出了果胶气凝胶和稳定材料的稳定材料特性。
多主元合金为合金开发开辟了广阔的成分空间。巨大的成分空间需要快速合成和表征以识别有前途的材料,以及合金设计的预测策略。定向能量沉积增材制造被证明是一种合成 Cr-Fe-Mn-Ni 四元系合金的高通量技术。一周内合成了 100 多种成分,探索了广泛的成分空间。可实现 ±5 at% 以内的均匀成分控制。快速合成与联合样品热处理(25 个样品对 1 个样品)和自动表征相结合,包括 X 射线衍射、能量色散 X 射线光谱和纳米硬度测量。然后使用平衡开发和探索的主动机器学习算法将测量属性的数据集用于预测强化模型。使用合金成分训练表示晶格畸变的学习参数。这种快速合成、表征和主动学习模型的结合产生了比以前研究的合金强度明显更高的新合金。
定向金属沉积 (DMD) 是一种很有前途的金属增材制造技术,其中零件是通过使用沿预定义轨迹移动的激光束融合注入的金属粉末颗粒来制造的。刀具路径通常包括曲线或边缘部分,机器轴需要相应地减速和加速。因此,局部施加的激光能量和粉末密度在沉积过程中会发生变化,导致局部过度沉积和过热。这些偏差还受到刀具路径几何形状和工艺持续时间的影响:先前的沉积可能会在时间和空间上影响相近的刀具路径段,导致局部热量积聚,并形成与使用相同参数沉积的其他段中产生的轮廓和微观结构不同的轮廓和微观结构,这是由于几何形状和温度相关的集水轮廓所致。为了防止这些现象,需要轻量级和可扩展的模型来预测可变刀具路径的工艺行为。在本文中,我们提出了一种基于人工智能的方法来处理 Inconel 718 的工艺复杂性和多种刀具路径变化。考虑到先前定义的刀具路径,使用人工神经网络 (ANN) 来预测沉积高度。通过打印包含多个曲率和几何形状的随机刀具路径,生成了训练数据。基于训练后的模型,可以成功预测整个刀具路径的显著局部几何偏差,并且可以通过相应地调整工艺参数来预测。
用于储能的电极已经在学术界和行业中以各种方式进行了古典准备,例如老虎机涂层或泥浆铸造。2在这些方法中,电极材料被分散/溶解在溶剂中以形成粘性浆,并在涂层和溶剂蒸发后获得膜。尽管如此,优化厚度控制或膜组装效率并不容易。此外,由于在纳米颗粒的有效分散剂中缺乏控制剂,因此在准备纳米颗粒的粘液糊状糊状物中缺乏控制,导致纳米颗粒的有效分散,导致不利的凝聚力。这主要适用于化学方法和热方法的情况,这些方法容易掺入具有不必要的忠诚的活性材料,从而降低电极性能。17,18
摘要:定向能量沉积 (DED) 已广泛应用于部件修复。在修复过程中,表面缺陷被加工成凹槽或槽口,然后重新填充。凹槽几何形状的侧壁倾斜角已被公认对修复部件的机械性能有相当大的影响。这项工作的目的是通过实验和建模研究修复各种 V 形缺陷的可行性。首先,通过扫描缺陷区域定义修复体积。然后,对修复体积进行切片以生成修复刀具路径。之后,使用 DED 工艺在具有两种不同槽口几何形状的受损板上沉积 Ti6Al4V 粉末。通过微观结构分析和拉伸试验评估修复部件的机械性能。对修复部件的测试表明,在三角形槽口修复中,沉积物和基材之间具有良好的结合。开发了基于顺序耦合热机械场分析的 3D 有限元分析 (FEA) 模型来模拟相应的修复过程。测量了修复样品上基体的热历史,以校准 3D 耦合热机械模型。温度测量结果与预测的温度结果非常吻合。之后,使用经过验证的模型预测零件中的残余应力和变形。预测的变形和应力结果可以指导修复质量的评估。
摘要:范德华磁性材料最近被发现,引起了材料科学和自旋电子学的极大关注。制备原子厚度的超薄磁性层具有挑战性,而且大多是通过机械剥离来实现的。在这里,我们报告了磁性范德华 NiI 2 晶体的气相沉积。在厚度为 5 − 40 nm 的 SiO 2 /Si 衬底上和六方氮化硼(h-BN)上生长出单层厚度的二维(2D)NiI 2 薄片。温度相关的拉曼光谱揭示了原生 2D NiI 2 晶体中直至三层的稳健磁相变。电测量显示 NiI 2 薄片具有半导体传输行为,开/关比高达 10 6。最后,密度泛函理论计算显示 2D NiI 2 中存在层内铁磁和层间反铁磁有序。这项工作为外延二维磁性过渡金属卤化物提供了一种可行的方法,也为自旋电子器件提供了原子级薄材料。关键词:二维磁体、范德华材料、气相沉积、拉曼光谱、相变 A
1. Yu, JH, Choi, YS, Shim, DS 和 Park, SH, Optics & Laser Technology, 2018, 106, pp.87-93. 2. Kanishka, K. 和 Acherjee, B., Journal of Manufacturing Processes, 2023, 89, pp.220-283.
