定向能量沉积 (DED) 工艺的有限元模型可预测高速钢长方体样品制造过程中的热历史。模拟结果验证依赖于测量数据和预测数据之间的比较,例如基体内部的温度历史和最后一层涂层的熔池深度。这些 DED 模拟集成在优化循环中,可确定两个可变激光功率函数,它们能够产生恒定的熔池大小。这些函数有望在各层上提供均匀的微观结构。计算出的热场和由三个 AISI M4 实验产生的微观结构是相互关联的,这些实验是在恒定激光功率情况下进行的,两个优化函数位于沉积物内不同深度的三个关注点处。观察到熔体过热温度和热循环历史对微观和纳米硬度测量的影响。因此,优化的激光功率函数为样品提供了比恒定激光功率函数更均匀的微观硬度,但是,整个沉积的 M4 钢层的纳米硬度图并未完全证实微观结构的均匀性。
原子层沉积 (ALD) 是目前广泛应用的薄膜生长方法。它目前用于微电子和发光显示技术的工业制造工艺。由于可以生长致密、保形的薄膜,并且厚度可以得到完美控制,因此 ALD 有望用于许多其他应用领域,如能源、传感、生物材料和光子学。尽管关于其在防腐方面的应用报道很少,但事实已证明 ALD 的优良特性对该领域大有裨益。在简要回顾了 ALD 的原理以及主要参数对薄膜性能的影响之后,本报告试图展示该技术在减轻腐蚀方面的应用。本文回顾了在不同领域成功使用 ALD 来保护金属和非金属表面的各种实例。
L. Rebohle 1、A. Quade 2、T. Schumann 1、D. Blaschke 1、R. Hübner 1、R. Heller 1、R. Foest 2、J.
铝合金在增材制造中的应用因其先进的几何形状和轻量化应用而备受关注。在定向能量沉积中,粉末原料用激光束处理,这提供了很高的工艺灵活性。然而,由于铝合金对氧化和孔隙率的敏感性,粉末原料在储存或回收后老化仍然是一项根本挑战。为了研究这些影响,AlSi10Mg 粉末批次在不同条件下老化,并通过定向能量沉积进行处理。结果表明,粉末老化不会显著改变颗粒尺寸或形态,但它会在粉末中引入更多的氧和氢。颗粒的氧化降低了粉末对激光束的吸收率,增加了熔池的润湿性,从而影响了轨迹几何形状。在从老化粉末中沉积的材料中观察到 3.5 到 4.2 倍的孔隙率,这很可能是由于老化粉末中氢含量增加而导致的氢孔。用老化粉末制造的部件的拉伸性能显示屈服强度降低 19.0%,极限强度降低 14.2%,伸长率提高 99.2%,这很可能是由于微观结构变粗和孔隙率增加造成的。2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可协议开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
铝合金在增材制造中的应用因其先进的几何形状和轻量化应用而备受关注。在定向能量沉积中,粉末原料用激光束处理,这提供了很高的工艺灵活性。然而,由于铝合金对氧化和孔隙率的敏感性,粉末原料在储存或回收后老化仍然是一项根本挑战。为了研究这些影响,AlSi10Mg 粉末批次在不同条件下老化,并通过定向能量沉积进行处理。结果表明,粉末老化不会显著改变颗粒尺寸或形态,但它会在粉末中引入更多的氧和氢。颗粒的氧化降低了粉末对激光束的吸收率,增加了熔池的润湿性,从而影响了轨迹几何形状。在从老化粉末中沉积的材料中观察到 3.5 到 4.2 倍的孔隙率,这很可能是由于老化粉末中氢含量增加而导致的氢孔。用老化粉末制造的部件的拉伸性能显示屈服强度降低 19.0%,极限强度降低 14.2%,伸长率提高 99.2%,这很可能是由于微观结构变粗和孔隙率增加造成的。2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可协议开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。
摘要:本研究采用激光定向能量沉积在 TiNi 形状记忆合金基体上构建富 Ti 三元 Ti-Ni-Cu 形状记忆合金,实现多功能双金属形状记忆合金结构的连接。采用经济高效的 Ti、Ni 和 Cu 元素粉末混合物作为原材料。采用各种材料表征方法来揭示两部分不同的材料特性。制备的 Ti-Ni-Cu 合金微观结构以 TiNi 相为基体,Ti 2 Ni 二次沉淀物。硬度没有显示出高值,表明主相不是硬质金属间化合物。通过拉伸试验获得了 569.1 MPa 的结合强度,数字图像相关揭示了两个部分不同的拉伸响应。使用差示扫描量热法测量相变温度。测得 Ti-Ni-Cu 合金截面的奥氏体终轧温度高于 80 ◦ C。对于 TiNi 基体,经测试,奥氏体终轧温度在底部接近 47 ◦ C,在上部基体区域约为 22 ◦ C,这是由于重复的激光扫描对基体起到了退火作用。最后,对两个形状记忆合金侧面的多重形状记忆效应进行了测试和识别。
首先,我要感谢我的导师兼西门子导师 Tobias Kamps 的指导、支持和信任。Tobias 是第一个鼓励我并给予我信心开始攻读博士学位的人。在西门子攻读博士学位期间,我学到了很多东西,无论是专业上还是个人方面,因为 Tobias 委托我负责各种内部和外部项目的技术项目管理。我还要感谢我的导师、LTU 的 Jörg Volpp 和 Alexander Kaplan 的指导、随时准备的态度以及推动我做得越来越好。Jörg 总是准备好对科学出版物给出非常快速和详细的反馈,并通过非常深入的科学讨论让我走上正轨。此外,如果没有他和他在科学界的丰富经验,整个组织和我攻读博士学位期间的快速进步是不可能的。Alexander 通过各种研讨会和讨论帮助了我很多,特别是在我攻读博士学位期间的个人发展方面。我真的很感激我们在书评或研讨会上对个性的深入交谈。他总是让我对事物有不同的看法。如果没有他们,这项工作和经历就不会是现在的样子。我还要感谢巴伐利亚合作研究计划 (BayVFP) 为“VALIDAD”项目提供的资金、欧洲创新与技术研究所 (EIT RawMaterials) 为“SAMOA”项目提供的资金以及瑞典研究委员会为“SMART”项目提供的资金。
工具路径独立于机器人或机器人而创建。然后,针对特定机器人单元,通过PRI(Powermill机器人接口)处理每个工具路径,这也是外部定位器的控制。工具或火炬的方向,避免碰撞和避免奇异性的方向发生在此过程的这一步骤中。所有这些机器人运动信息均与焊接参数,沉积进料速率和其他参数一起记录,并保存在Robsim文件中。
近年来,金属增材制造已从一项实验室技术发展成为具有竞争力和工业应用价值的生产方法。然而,尽管粉末床技术在更高的构建速度和更大的设计空间方面表现出优势,但迄今为止,其成功的故事还无法转移到沉积焊接技术上。由于焊接原理和应用的材料相似,因此一定还有其他原因阻碍了突破。本论文涉及直接金属沉积 (DMD),这是一种将金属粉末吹入由激光束产生的熔池中的技术。制造具有高几何精度和致密微观结构的复杂零件的能力不仅取决于对材料行为的控制,还取决于对多层堆积过程的透彻理解。在这里,从系统的角度分析了能量输入、粉末输送、刀具路径和零件几何形状之间的相互作用。
定向能量沉积 (DED) 描述了一类增材制造 (AM) 工艺,其中聚焦热能用于在沉积材料时熔化材料,这在指南 F3187 中有详细描述,并提供了除既定工艺之外的额外制造选项。DED 有可能减少制造时间和成本,并提高零件功能性。通常,DED 用于处理金属原料以执行以下任务之一:制造净形状和近净形状零件、在常规加工的零件上制造特征、进行表面改性(包覆)以防止磨损和腐蚀,或通过向破损或磨损的零件添加金属来修复金属零件。DED 工艺根据几个维度而有所不同,包括原料类型(线材或粉末)、能量源(激光、电子束、电弧、等离子)、能量源数量和机器架构。一些实施方案包括减材工艺,以将零件和特征加工成最终尺寸。一些实施方案利用一个或多个实时传感器来监控各种性能指标,例如熔池温度或尺寸。从业者了解传统的、长期存在的制造工艺(例如切割、连接和成型工艺,例如通过机械加工、焊接或铸造)的优势和劣势,并在设计阶段和选择制造工艺时给予适当的考虑。就 DED 和 AM 而言,设计和制造工程师的经验通常有限。没有与传统工艺相关的限制,DED 的使用为设计师和制造商提供了高度的自由度,这需要了解该工艺的可能性和局限性。本设计指南通过提供有关 DED 零件和特征的典型特征的信息、对这些特征基于工艺的原因的见解以及对工艺能力和局限性的理解,为不同的 DED 技术提供指导。这些信息和理解应该为设计师提供指导,他们可以利用这些指导来利用 DED 功能、绕过限制进行设计并避免工艺缺点。本文件扩展了 ISO/ASTM 52910(通用设计指南),并补充了金属和聚合物材料的粉末床熔合设计指南(ISO/ASTM 52911-1 和 -2),以及正在开发的其他工艺特定设计指南。此外,它专门针对 F3187 指南中的通用 DED 描述并以此为基础。
