氮(N)的可用性限制了许多森林生态系统的主要生产率,尤其是北方和温带地区的生态系统(Lebauer and Treseder,2008; Du等,2020a)。可用的n来自通过土壤N矿化和叶子N吸收的内部循环,以及通过生物膜固化,大气N沉积和基岩风化的外部输入(Cleveland等,2013; Du and de Vries,2018; Morford et ef and。作为外部N输入,N沉积刺激植物的生长,从而增加许多陆地生态系统的C固结,尤其是在一个持续存在大气CO 2浓度的世界中(De Vries等,2014; O''Sullivan et al。自从工业革命伴随着人为n排放和沉积的工业革命以来,全球n个周期已被Human活动发生了巨大变化(Galloway等,2008,2021)。已经发现大量N排放会导致严重的空气污染(例如雾霾,酸雨和臭氧),并导致负面的生态影响(例如生物多样性丧失,酸性,酸性),当时是在各种生态系统中沉积到各种生态系统中,两者都在当前的热点地区,主要发生在East and South Asia和South Aseborions和北方地区,欧洲;等人,2010年;这些负面影响引起了从1980年代,1990年代的美国和2010年代的中国遏制欧洲国家排放的政策(Amann等,2013; Li等,2017; Zheng等,2018)。因此,n沉积在
在基于激光的金属粉末的定向能量沉积中,使用优化参数可以使用无缺陷的材料,而与这些优化的参数不同,通常会导致高孔隙率,高稀释度,高稀释度或不同的轨道几何形状。构建复杂的地理网格时的主要挑战之一是沉积的几何和热条件正在不断变化,这需要在生产过程中调整过程参数。为了促进此过程,可以使用诸如热摄像机之类的传感器从过程中提取数据并调整参数以保持过程稳定,尽管外部干扰。在这项研究中,研究了从同轴热摄像机中提取的不同信号并进行了比较以优化过程。为了研究这种可能性,以恒定激光功率沉积了五个重叠的轨道,以提取平均像素值以及熔体池面积,长度,宽度和方向。每个轨道沉积的行为是根据激光功率建模的,这些模型用于计算和测试基于不同信号的激光功率降低策略。结果表明,熔体池面积是用于有效过程控制的最相关的信号,导致稳定过程,仅轨道到轨道的信号变化的±1.6%。
航空航天飞行面板必须提供低质量的高强度。对于铝面板,通常以锻造板开始并去除大部分材料以达到所需的结构,包括带有所需的钢筋肋骨模式的较薄板。作为替代方案,本研究实现了杂种制造,其中铝首先仅使用添加摩擦搅拌(AFSD)在肋骨位置沉积在底板上。然后使用结构化的光扫描来测量印刷几何形状。此几何形状最终用作计算机数值控制(CNC)加工的库存模型。本文详细介绍了由:AFSD组成的混合制造过程,以打印预成式的结构化光扫描,以生成库存模型和工具路径,三轴CNC加工以及零件几何和显微结构的后处理测量。©2023作者。由Elsevier Ltd.这是CC BY-NC-ND许可证(https://creativecommons.org/licenses/by-nc-nc-nd/4.0)下的开放式访问文章。关键字:混合制造,添加摩擦搅拌沉积,结构化扫描,加工
多主元合金为合金开发开辟了广阔的成分空间。巨大的成分空间需要快速合成和表征以识别有前途的材料,以及合金设计的预测策略。定向能量沉积增材制造被证明是一种合成 Cr-Fe-Mn-Ni 四元系合金的高通量技术。一周内合成了 100 多种成分,探索了广泛的成分空间。可实现 ±5 at% 以内的均匀成分控制。快速合成与联合样品热处理(25 个样品对 1 个样品)和自动表征相结合,包括 X 射线衍射、能量色散 X 射线光谱和纳米硬度测量。然后使用平衡开发和探索的主动机器学习算法将测量属性的数据集用于预测强化模型。使用合金成分训练表示晶格畸变的学习参数。这种快速合成、表征和主动学习模型的结合产生了比以前研究的合金强度明显更高的新合金。
MMC对RH30和RD球体的影响。 a如果在Rh30 -arms-(左)(左)和RD -erms-(右)球体上染色(FN; Green)和胶原I(大肠杆菌;红色),则在不存在MMC处理的情况下冷冻切片(DAPI,cell核,蓝色),比例尺=50μm。 B胶原蛋白I的平均荧光强度(MFI)和球体冷冻切片中的纤连蛋白表达。 c离开。 在所有测试条件下播种在ULA板中的球体的相对形图像,以及井底RH30粘附细胞的细节。 比例尺=右200μm。 如果在RH30和RD球体中用MMC处理的纤连蛋白和胶原蛋白I的染色显示RH30球体下方的粘附细胞的存在。 比例尺=50μm。 d无需MMC处理的RH30和RD球体的形状参数(面积,周长,圆度和坚固),n = 12,Student t -test*p <0.05,** p <0.01,**** p <0.0001。 (为了解释该图传奇中对颜色的引用,读者被转介给本文的网络版本。)MMC对RH30和RD球体的影响。a如果在Rh30 -arms-(左)(左)和RD -erms-(右)球体上染色(FN; Green)和胶原I(大肠杆菌;红色),则在不存在MMC处理的情况下冷冻切片(DAPI,cell核,蓝色),比例尺=50μm。 B胶原蛋白I的平均荧光强度(MFI)和球体冷冻切片中的纤连蛋白表达。c离开。在所有测试条件下播种在ULA板中的球体的相对形图像,以及井底RH30粘附细胞的细节。比例尺=右200μm。如果在RH30和RD球体中用MMC处理的纤连蛋白和胶原蛋白I的染色显示RH30球体下方的粘附细胞的存在。比例尺=50μm。 d无需MMC处理的RH30和RD球体的形状参数(面积,周长,圆度和坚固),n = 12,Student t -test*p <0.05,** p <0.01,**** p <0.0001。(为了解释该图传奇中对颜色的引用,读者被转介给本文的网络版本。)
高度集成的可拉伸电子产品的发展需要开发可扩展的(亚)微米导体图案。共晶镓铟 (EGaIn) 是一种适用于可拉伸电子产品的导体,因为其液态金属特性使其在变形时具有高电导率。然而,它的高表面能使其以亚微米分辨率进行图案化具有挑战性。在此,我们通过首次报道 EGaIn 的电沉积克服了这一限制。我们使用一种非水基乙腈电解质,该电解质具有高电化学稳定性和化学正交性。电沉积材料可产生低电阻线,在(重复)拉伸至 100% 应变时仍保持稳定。由于电沉积受益于用于图案化基底金属的成熟纳米制造方法的分辨率,因此提出的“自下而上”方法通过在纳米压印预图案化的金种子层上进行电镀,在弹性体基板上实现了 300 nm 半间距的 EGaIn 规则线的创纪录高密度集成。此外,通过填充高纵横比通孔,实现了垂直集成。该功能通过制造全向可拉伸的 3D 电子电路概念化,并展示了用于制造微芯片互连的稳定镶嵌工艺的软电子模拟。总体而言,这项工作提出了一种简单的方法来解决高度集成 (3D) 可拉伸电子产品中的金属化挑战。
水性Zn-Ion电池(Azibs)代表了锂后系统中一种安全可持续的技术,尽管对阴极处的物质行为的不良理解阻止了Effi Cient Azibs的全面发展。Znmn 2 O 4(ZMO)被认为是锂离子电池的良好确定的Limn 2 O 4阴极的阴极候选者之一,但是在水性环境中锌离子存在的情况下,其电化学机制尚不清楚并且仍在辩论。在这项工作中,我们通过脉冲激光沉积(PLD)合成了纳米结构的ZMO薄膜,并通过微渗透,光谱和衍射技术进行了广泛的表征,评估了膜的特性和退火条件如何影响膜的特性。自给自足的性质和对纳米级的高度控制性使薄膜成为研究水溶液中材料的电化学的理想模型系统,并强调膜性能对其电化学反应的影响。我们强调了氧气在膜孔隙率调节中的关键作用,以及沉积压力和退火温度的综合作用,以产生具有量身定制特性的膜在形态,结晶度和Zn stoichiimetry方面。报道了一种复杂的氧化还原机制,涉及多种并发反应和氢氧化锌硫酸锌水合物(ZHS)的形成,以及膜孔隙率对膜以较高扫描速率的伏安行为的影响。我们的结果证实了ZMO材料的复杂电化学机制,它不仅涉及Zn 2 +插入/提取/提取,而且还涉及Mn 2 +从电解质中的关键参与,并为工程ZMO基的纳米级设计铺平了道路。
摘要可持续的能源过渡刺激了最大程度地减少材料和能源浪费的技术的开发,例如增材制造(AM)。激光金属沉积(LMD)是一种有希望的AM技术,但其复杂性和有限的自动化阻碍了其在生产链中的实现。为提高生产率,已经开发了高沉积率LMD(HDR-LMD)技术,需要先进的设备和强大的激光来源。相比之下,常规的LMD(C-LMD)过程更简单,实施便宜。这项研究旨在通过调节激光功率,扫描速度,粉末进料速率和Inconel 718单轨道上的秒距离来优化C-LMD的生产率和效率。一种创新的方法消除了切割标本以评估单个轨道的必要性,从而可以通过有限的操作员参与,使整体的几何形状和性能表征更快,更强大。进行了广泛的实验运动,以研究过程参数对轨道几何,生产力和效率的影响。多目标优化过程确定了参数组合,同时保持高效率和理想的外壳形状。该研究达到的沉积率范围从700至800 g/h,粉末集水效率在75%至90%之间。使用包括1775 W激光功率的参数,扫描速度在960到1140 mm/min,粉末进料速率在810至1080 g/h之间以及9 mm的秒距离。该研究还清楚地表明,可以进一步提高C-LMD过程性能。本文收集的发现是工作第二部分中进一步优化的基础,该研究的重点是多通邮政多层,并达到1500 g/h的沉积速率,从而促进了工业级别的C-LMD过程。
粗晶粒和柱状晶粒结构沿增材制造金属的构建方向外延生长是一种常见现象。因此,成品部件通常表现出明显的各向异性机械性能、延展性降低,因此开裂敏感性高。为了提高增材制造部件的机械性能和可加工性,等轴和细晶粒结构的形成被认为是最有益的。在本研究中,研究了激光丝增材制造过程中通过超声波激发熔池来细化晶粒的潜力。开发了一种超声波系统并将其集成到激光丝沉积机中。AISI 316L 钢用作基材和原料。通过光学显微镜、扫描电子显微镜和电子背散射衍射分析,证实了粗柱状晶粒 (d m- = 284.5 μ m) 转变为细等轴晶粒 (dm = 130.4 μ m),并且典型的 <100> 纤维织构随着振幅的增加而减弱。结果表明,晶粒细化的程度可以通过调节超声振幅来控制。没有观察到树枝状结构的显著变化。超声焊极/熔池直接耦合与激光丝沉积工艺的结合代表了一种开创性的方法和有前途的策略,可用于研究超声对晶粒细化和微观结构调整的影响。
晚期分子图像技术(AMIT)超导回旋子的内部离子源使用纯tantalum制成的阴极生成高能H-离子束,以生产正电子发射断层扫描的同位素。在服务期间,阴极受到血浆中高能离子的影响。所产生的侵蚀会产生陨石坑,从而降低提取光束的电流密度。当离子源无法再激活时,最终需要更换阴极。这项研究探讨了通过激光金属沉积添加剂制造来修复Amit回旋子中使用的触觉阴极的可能性。首先将受损的部分以3D成像,扫描电子显微镜和Vickers显微硬度为特征,以了解服务过程中发生的损伤机制并量化损害的程度。使用高纯度触觉线和粉末原料进行了测试,并确定了使用高纯度触觉的电线和粉末原料。已经证明了激光金属沉积恢复用于Amit Cyclotron的受损阴极的能力。