。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年1月30日。 https://doi.org/10.1101/2025.01.30.635771 doi:Biorxiv Preprint
人工智能(AI)和机器学习(ML)的使用正在迅速改变生物医学研究的各个领域,而干细胞生物学也不例外。将干细胞培养和区分为特定谱系需要精确控制各种变量,包括细胞密度,养分浓度,温度和生长因子。手动优化这些条件是耗时,劳动力密集的,并且通常依赖于反复试验。但是,AI和ML具有通过确定干细胞培养和分化的最佳条件来加速这一过程的潜力,从而导致更有效,更一致的结果。高级计算技术和干细胞生物学的交集有望简化研究,降低成本并提高基于干细胞的疗法的质量。
静态基因表达程序已在干细胞和成熟人类细胞中得到广泛表征。然而,在细胞分化过程中,RNA 异构体随细胞状态转变而变化的动态、决定因素和功能后果在很大程度上仍不清楚。在这里,我们建立了一个改进的体外人类神经发生模型,该模型适用于全系统的基因表达分析。我们的多组学分析表明,细胞形态的显著改变与 RNA 异构体表达的广泛变化密切相关。我们的方法确定了在不同分化阶段表达的数千种新的 RNA 异构体。RNA 异构体主要来自外显子跳跃和人类神经发生过程中转录起始和多聚腺苷酸化位点的替代使用。转录异构体的变化可以重塑蛋白质异构体的身份和功能。最后,我们的研究确定了一组 RNA 结合蛋白是分化阶段特异性整体异构体变化的潜在决定因素。这项工作支持了神经发生过程中状态转变背后的受调控异构体变化的观点。
未分化的神经茎和祖细胞(NSPC)会遇到结合质膜蛋白和功能分化的细胞外信号。膜蛋白受N-连接的糖基化调节,从而使糖基化在细胞分化中起着至关重要的作用。我们评估了在NSPC中控制N-糖基化的酶,发现负责产生B 1,6的N-聚糖,N-乙酰氨基氨基氨基转移酶V(MGAT5)的酶的损失导致NSPC分化的体外和In Vivo的特定变化。MGAT5纯合子NULL NSPC形成更多的神经元和较少的星形胶质细胞。在脑大脑皮层中,MGAT5的损失导致神经元分化加速。快速的神经元分化导致NSPC生态裂细胞的耗竭,导致MGAT5 NULL小鼠的皮质神经元层的转移。糖基化酶MGAT5在细胞分化和早期大脑发育中起关键且先前未认识到的作用。
抽象的干细胞具有自我更新和分化的特殊能力,使其在再生医学中具有很高的价值。其中,神经干细胞(NSC)在神经发育和修复过程中起着基本作用。NSC特征和命运受到微环境和细胞内信号传导的精致调节。有趣的是,新陈代谢在神经分化过程中策划表观基因组动力学方面起着关键作用,从而促进了从未分化的NSC到专门的神经元和神经胶质细胞类型的转移。新陈代谢和表观基因组之间的这种复杂的相互作用对于精确调节基因表达模式并确保正确的神经发育至关重要。本评论重点介绍了NSC命运的代谢调节背后的机制及其与表观遗传调节的联系,以塑造干性和神经分化的转录程序。对这些分子齿轮的全面理解对于在神经系统疾病的再生医学和个性化疗法中的转化应用似乎是基础。
了解蛋白质表达动力学对于对细胞分化的机械理解至关重要。我们研究了NGN3的动力学,NGN3的动力学是胰腺内分泌发育至关重要的转录因子,包括其功能和解码机制。敲击内源性报告基因表明,Ngn3蛋白的表达在人IPS衍生的内分泌祖细胞中具有13小时的周期性振荡,并且随着细胞与β样细胞和α样细胞的分化而被关闭。增加NGN3蛋白的稳定性会导致一个宽的表达峰,而不是振荡,而较大的峰到槽变化。这导致早熟的内分泌与β样细胞和α样细胞以及关键NGN3靶基因的早熟表达。对动力学,数学建模和生物信息学的单细胞分析表明,NGN3振荡的解码是通过折叠式检测通过不一致的前馈基序进行的,该基序解释了正常和早熟的分化。我们的发现表明振荡性NGN3动力学控制分化的时机,但不能控制命运规范。
肿瘤抑制磷酸酶和Tensin同源物(PTEN)负调节胰岛素信号通路。种系PTEN致病性变异引起与儿童脂肪瘤发育相关的PTEN Hamartoma肿瘤综合征(PHTS)。脂肪祖细胞(APC)在连续培养过程中失去了分化为脂肪细胞的能力,而PHTS患者的脂肪瘤的APC在长时间内保留其脂肪生成潜力。仍然不清楚哪种机制会触发这种异常的脂肪组织生长。为了研究PTEN在脂肪组织发育中的作用,我们进行了功能性测定和对照和PTEN敲低APC的RNA-SEQ。使用siRNA或CRISPR降低PTEN水平,导致APC的增殖和分化增强。 已知叉子盒蛋白O1(FOXO1)转录活性受胰岛素信号的调节,FOXO1在mRNA水平下下调,而其通过磷酸化的失活增加。 FOXO1磷酸化启动脂肪生成激活转录因子固醇调节元素结合蛋白1(SREBP1)的表达。 sREBP1水平较高,在PTEN敲低后,可能会说明观察到的脂肪形成增强。 为了验证这一点,我们在PTEN CRISPR细胞中过度过度过分活跃的FOXO1,并发现脂肪形成降低,并伴有SREBP1下调。 我们观察到与对照组相比,PTEN CRISPR细胞显示出较小的衰老,并且在PTEN敲低细胞中衰老标记CDKN1A(P21)被下调。使用siRNA或CRISPR降低PTEN水平,导致APC的增殖和分化增强。叉子盒蛋白O1(FOXO1)转录活性受胰岛素信号的调节,FOXO1在mRNA水平下下调,而其通过磷酸化的失活增加。FOXO1磷酸化启动脂肪生成激活转录因子固醇调节元素结合蛋白1(SREBP1)的表达。sREBP1水平较高,在PTEN敲低后,可能会说明观察到的脂肪形成增强。为了验证这一点,我们在PTEN CRISPR细胞中过度过度过分活跃的FOXO1,并发现脂肪形成降低,并伴有SREBP1下调。我们观察到与对照组相比,PTEN CRISPR细胞显示出较小的衰老,并且在PTEN敲低细胞中衰老标记CDKN1A(P21)被下调。细胞衰老是PTEN敲低与对照细胞的RNA-Seq中发现的最显着富集的途径。这些结果提供了证据,表明PTEN参与了APC增殖,差异和衰老的调节,从而导致PHT患者的异常脂肪组织生长。
In the present study, we investigated the propensity of endoderm differentiation of eleven lines 44 of four sets of hiPSCs, each of which was derived from an independent cellular source, by 45 tracking the differentiation from pluripotent cells to definitive endoderm (DE), hepatocytes and 46 intestinal organoids (hIO).我们表明,在这些HIPSC中,早期激活和高水平的47 Mixl1活性与内胚层分化的倾向增强有关。在48个小鼠胚胎中,Mixl1在原始条纹中表达,并且在49胃期间的新生中胚层表达,表达持续存在于早期 - 粒石阶段胚胎28,29的原始条纹中。50 Mixl1功能的丧失与DE的缺乏以及在原始条纹30处出现后不久的51个中胚层的局部隔离有关。在小鼠胚胎52干细胞中,混合1的功能的丧失导致侧向中胚层组织53和造血谱系31的效率微不足道,而本构型混合L1活性则促进了54 FOXA2+/ECAD+ DE细胞的分化。在小鼠层状干细胞中,在55个分化的早期阶段激活MixL1与有效的内胚层分化28相关。对分子56 DE分化属性的分析表明,HIPSC 57分化的早期Mixl1的活性促进了MicroPATTERNS中FOXA2+/SOX17+ DE细胞的分化33。61我们58进一步表明,HIPSC中Mixl1的增强表达增强了内胚层倾向,59为如何重新连接谱系倾向提供了新的学习,以生成拟合拟合的方法,以生成拟合的60多能干细胞以进行翻译。
未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本的版权持有人(本版本发布于2024年5月10日。; https://doi.org/10.1101/2024.05.05.08.592952 doi:biorxiv Preprint
摘要本文提供了1958年至2020年欧盟(EU)的法律整合和差异化的创新,全面的定量分析。在简化的分析框架以及欧盟初级,欧盟二级和欧盟有关的国际法上的新或修订的数据集上建立了挑战,它挑战或资格获得欧洲智慧的几个方面。特别是,它在范围的机会方面提供了有史以来第一个整合的定量估计,表明差异化是以不情愿和折衷的方式部署的,并为各种时间,空间和政策差异的多种方式提供了明确的测量。这些方法论和经验结果证实了纪念方法研究欧洲一体化的富有成效,并指向有望在国际融合和比较区域主义的未来研究的有前途的途径。