大量证据支持蛋白质中本质上无序区域(IDR)在正常细胞功能和包括癌症在内的许多疾病过程中起关键作用[1]。尽管我们对IDR如何调节众多生物学过程(例如基因调节和细胞内信号传导)的理解有了很大的进步,但仍有许多空旷的问题和挑战。此外,IDR现在被广泛认为是生物分子冷凝物的驱动因素和调节剂,它们是无膜的亚细胞集线器,在活细胞中生化过程的动态分区中起重要作用[1]。突变已显示导致冷凝物的异常行为,导致细胞质中信号事件的失调以及细胞核中致癌转录程序的激活[2,3]。因此,迫切需要了解IDR的生物学功能的基础机械原理,并利用这些知识来针对其在疾病过程中的异常行为。
开发SSB用于室温操作。5,其中,锂离子导电argyrodites li 6 ps 5 x(x = cl,br,i)经过了广泛的研究,由于其高离子电导率,它们的电力稳定性和加工性,引起了极大的关注。6–8 Li 6 PS 5 Br的电导率可以合成控制,如Gautam等人所证明的那样。 表明,可以通过从不同退火温度中淬火6 ps 5 br来获得不同的Br /S 2位点疾病(因此不同的离子电导率)。 9,该疾病被认为将电荷不均匀性引入阴离子sublattice(疾病越高,电荷不均匀性越大 - 导致跨不同晶体学LI + 的锂离子密度越扩散(或扩散)较高(或扩散)。6–8 Li 6 PS 5 Br的电导率可以合成控制,如Gautam等人所证明的那样。表明,可以通过从不同退火温度中淬火6 ps 5 br来获得不同的Br /S 2位点疾病(因此不同的离子电导率)。9,该疾病被认为将电荷不均匀性引入阴离子sublattice(疾病越高,电荷不均匀性越大 - 导致跨不同晶体学LI +
妊娠糖尿病(GDM)是一种糖尿病的一种形式,是在怀孕期间首次发生的糖尿病,影响了全球约15%的女性[1]。GDM最常报道的围产期后果是宏观疾病(重4公斤的新生儿),可以增加剖腹产,肩膀肌张力障碍,工具性出生和出生损伤的风险[2]。GDM通常在出生后解决,但它可能会对母亲和婴儿产生长期的影响,包括后来生活中2型糖尿病的风险增加[3]。GDM通常使用口服葡萄糖耐受性测试的血糖水平来诊断。GDM的全球患病率正在增加,部分原因是产妇年龄,肥胖和测试实践的增加。然而,兴起也可能是由于国际糖尿病协会在妊娠研究组中提出的新诊断标准(IADPSG),该协会利用较低的葡萄糖切断来诊断GDM [4]。这些标准已被某些国家采用,但没有采用其他国家,导致基于位置的GDM诊断差异。尽管引入了新的IADPSG Cri-Teria [5],但GDM患病率升高,但POST研究表明,不良结果的临床改善最小[6]。GDM的管理要求女性,涉及对血液glusose,饮食和运动改性的自我监测,在某些情况下,使用包括二甲双胍和胰岛素在内的药理学治疗[7]。越来越多的文献证明了GDM对妇女心理健康成果的影响。妇女将增加与医疗保健专业人员(HCP)的联系,而GDM的密集管理有可能将怀孕的文本经历从“正常”变为高度医疗的妊娠经验[8]。定性研究强调了在怀孕的不同阶段,患有GDM的女性经历的心理困扰,内gui,羞耻和自称[9,10]。furthore,更多的研究表明,GDM与随后心理健康症状学的发展之间的关联,特别是抑郁症和焦虑。最近的一项元分析报告,与没有GDM相比,GDM女性在产前或产后期间抑郁症的可能性高2-4倍[11]。研究经常在产前进行,对GDM的持续心理体验和后果的关注有限。重要的是要通过妇女的整个怀孕,出生,产后时期和社会心理支持来了解GDM的影响,以便全面了解GDM的影响。这项研究的目的是探索心理社会影响,包括在产前和产后时期患有GDM的女性的经验。
膜曲率对于多种细胞功能至关重要。虽然传统上将其归因于结构化域,但最近的研究表明,本质上无序的蛋白质也是膜弯曲的强大驱动因素。具体而言,无序域之间的排斥相互作用驱动凸弯曲,而吸引相互作用(导致液体状凝聚物)驱动凹弯曲。包含排斥和吸引域的无序域如何影响曲率?在这里,我们研究了结合吸引和排斥相互作用的嵌合体。当吸引域更靠近膜时,其凝聚会放大排斥域之间的立体压力,导致凸曲率。相反,当排斥域更靠近膜时,吸引相互作用占主导地位,导致凹曲率。此外,随着离子强度的增加,从凸曲率到凹曲率的转变发生了,这降低了排斥力同时增强了凝聚。与简单的机械模型一致,这些结果说明了无序蛋白质膜弯曲的一组设计规则。
1斐济国立大学电气和电子工程学院,斐济苏瓦2号2 2医学科学数学实验室,生物科学系,东京大学科学学院,东京大学,113-0033,日本113-0033,日本3,医学科学数学实验室,计算生物学和医学科学学院,研究生科学,研究生,科学研究生,纽约市。 0033,日本4医学科学数学实验室,Riken综合医学科学中心,横滨,230-0045,日本5日本5综合和智能系统研究所,格里菲斯大学,内森,布里斯班,QLD,QLD,4111,澳大利亚 *,应向他们致辞。电子邮件地址:rs:sharmaronesh@yahoo.com tt:tsunoda@bs.s.s.u-tokyo.ac.ac.jp as:alok.fj@gmail.com
围绕二鸟类蛋白蛋白蛋白蛋白蛋白体(包括许多在健康和疾病中至关重要的人)都是IDP的,并且在整体或部分结构上都在结构上不稳定,假设其形状和形式取决于其细胞上下文。在隔离时没有固定结构,它们不适合经典的DrugdiscoveryMethods,而遗传序列则无法准确预测其结构特性。因此,寻找和开发靶向靶向和结合这些蛋白质的严格设计的药物的努力可能会失败。转化生物物理公司peptone正在改变这一切。通过结合实验性生物物理学,原子级别的应用程序,高性能超级计算(HPC)和机器学习(ML),Peptone可以解锁IDP的潜力,并开拓了NovelepelapeuticsAgainStthisEntthisEntthisEntthisEntthisenterelynewlelynewclass的潜力。
半导体中疾病的存在可以极大地改变其物理特性。然而,忠实地考虑它的模型仍然稀缺且计算不足。我们提出了一个数学和计算模型,能够模拟几十纳米侧长的半导体合金的光电子响应,同时涉及由纳米级的组成障碍引起的量子定位效应。该模型基于对位置景观理论使电子和孔本征孔的结构的Wigner-Weyl分析。在针对1D和2D中基于本征态的计算验证后,我们的模型应用于不同组合物的3D Ingan合金中光吸收的计算。我们获得了平均带隙以下的吸收尾部的详细结构和所有模拟组合物的urbach能量。此外,Wigner-Weyl形式主义使我们能够在所有频率下定义并计算有效局部吸收能力的3D地图。最后,所提出的方法为将此方法推广到所有能量交换过程,例如逼真的设备中的辐射和非辐射重组。
随着热科学的最新进展,例如开发新的理论和实验技术,并发现了新的运输机制,这有助于重新审视振动热传导的基本原理,以制定更新的和知识的物理理解。模拟和建模方法的成熟度的越来越多,激发了利用这些技术来通过数字工程和多规模的电子热模型来快速改善和开发技术的愿望。考虑到这一愿景,这篇综述试图通过关注子领域之间通常未解决的关系来建立对热运输的整体理解,这对于多尺度建模方法至关重要。例如,我们概述了模式(计算)和光谱(分析)模型之间的关系。我们根据扰动方法和经典的基于透射率的模型将热边界电阻模型与热边界电阻模型相关联。我们讨论了晶格动力学与分子动力学方法之间的关系,以及最近出现的两通道传输框架,并连接了晶体样和无定形的热传导。在整个过程中,我们讨论了建模实验数据的最佳实践,并概述了这些模型如何指导材料级别和系统级设计。
更广泛的背景 可充电电池仍然是便携式电子设备、混合动力电动汽车和电动汽车的限制组件,这促使人们开展研究以提高锂离子电池,特别是正极材料的能量密度、功率容量和安全性。此外,电能储存在应对全球变暖的全球战略中发挥着关键作用。对于电网储存应用,需要低成本、维护成本低且充放电循环寿命长的电池技术。在过去几年中,具有阳离子无序岩盐型结构的锂过渡金属氧化物已成为潜在的高能量密度正极。当制备过量的锂含量时,这些化合物可以成为合理的离子和电子导体,这一认识导致人们研究这种结构空间中的大量成分。目前,几种阳离子无序岩盐正极已经表现出非常高的比容量和高达 1000 W h kg 1 的能量密度,远远超过市售的层状锂过渡金属氧化物正极。阳离子无序的岩盐阴极也有望整合廉价且地球丰富的过渡金属物质,从而为大规模电力运输和电网存储应用提供更可持续的电池化学反应。