全球生物多样性受到多种压力源的威胁,包括污染和气候变化等人为压力[1,2]。成功有效地减轻对特定物种的威胁需要了解其生态学的知识,但是这些信息并不总是可用。一种解决方案是使用生态模型来解释和预测物种的存在。该目标的一个有力的工具是物种分布模型(SDM),它们是试图使用环境特征的预测和解释物种发生的统计模型[3,4]。响应变量是物种的发生,解释性变量通常是环境特征,其中包括非生物环境的各种描述。研究人员基于统计模型和机器学习发展了越来越复杂的SDM技术[5,6]。SDM拟合到空间数据,其中空间自动校正是一种特征,应考虑到统计推断[7,8]和词语[9-11]。有关SDM和相关统计问题的更完整描述,我们将读者推荐给评论[12,13]。描述环境条件的数据集变得越来越多[14]。更多的数据在更充分地捕获物种的栖息地特征方面提供了希望,这可能会导致更准确的地图和对物种发生的新预测指标的检测[15-17]。这些预测因子很容易在SDM或其他生态模型中使用。对未知值的简单解决方案是两级方法。然而,环境数据通常是从其他模型中预测的,该模型以错误或从测量点进行了插值。GIS层[18-20]存在固有的不确定性,从气象站[21,22]插值的局部气候,主题分辨率和土地利用[23]的变化以及历史数据中物种发生的坐标[24]。最近的研究表明,模型性能差可以归因于环境数据中的高度不确定性[25]。空间未对准环境因素的测量结果与物种观察数据不正确,这是研究环境因素对物种分布的影响的关键来源[26]。预测精确的栖息地图图需要在研究区域的每个可能点上进行准确的环境条件。在第一阶段,人们可以预测每个空间位置的环境因素。典型的解决方案使用的是地统计学模型,例如Kriging,机器学习模型,例如随机森林或将每个观察结果缩放到完整的覆盖网格中。在第二阶段,这些预测的环境因素被视为特殊分布模型中的基础真理。但是,这种方法不考虑协变量值的不确定性,这可能导致错误的统计推断[27]。很少有研究试图评估环境变量对SDM模型的不确定性影响[26-32]。
摘要目的——图像分割是图像处理应用中最重要的任务之一。它是许多面向应用的宝贵工具,例如医疗保健系统、模式识别、交通管制、监视系统等。然而,准确的分割是一项关键任务,因为找到适合不同类型图像处理应用的正确模型是一个长期存在的问题。本文开发了一种新颖的分割模型,旨在成为使用任何类型图像处理应用的统一模型。所提出的精确并行分割模型 (PPSM) 结合了三种基准分布阈值技术来估计最佳阈值,从而实现分割区域的最佳提取:高斯分布、对数正态分布和伽马分布。此外,提出了一种并行增强算法来提高所开发的分割算法的性能并最大限度地降低其计算成本。为了评估所提出的 PPSM 的有效性,使用了不同的图像分割基准数据集,例如 Planet Hunters 2 (PH2)、国际皮肤成像合作组织 (ISIC)、微软剑桥研究院 (MSRC)、伯克利分割基准数据集 (BSDS) 和 COntext 中的通用对象 (COCO)。获得的结果表明,与其他分割模型相比,使用不同类型和领域的基准数据集,所提出的模型能够显著缩短处理时间,实现高精度。设计/方法/方法——所提出的 PPSM 结合了三种基准分布阈值技术来估计最佳阈值,从而实现分割区域的最佳提取:高斯分布、对数正态分布和伽马分布。结果——根据所获得的结果,可以观察到,所提出的基于 PPSM——最小交叉熵阈值 (PPSM - MCET) 的分割模型是一种具有高性能的稳健、准确、高度一致的方法。原创性/价值——使用 MCET 构建了一种利用高斯、伽马和对数正态分布组合的新型混合分割模型。此外,为了以最小的计算成本提供准确、高性能的阈值,所提出的 PPSM 使用并行处理方法来最大限度地减少 MCET 计算中的计算工作量。所提出的模型可用作许多面向应用的宝贵工具,例如医疗保健系统、模式识别、交通管制、监控系统等。关键词最小交叉熵阈值、混合分布、精确分割、并行计算论文类型研究论文
抽象提取神经活动的高维记录与复杂行为之间的关系是系统神经科学中的无处不在问题。朝向这个目标,编码和解码模型试图推断出给定行为的神经活动的条件分布,反之亦然,而维度降低技术旨在提取可解释的低维表示。变化自动编码器(VAE)是易于推断神经或行为数据低维嵌入的富裕深度学习模型。然而,VAE准确地对任意的条件分布进行建模,例如在神经编码和解码中遇到的有条件分布,甚至是同时遇到的。在这里,我们提出了一种基于VAE的方法,用于准确计算此类条件分布。我们通过在掩盖行走环的掩盖身体部分上检索条件分布来验证具有已知地面真理的任务的方法,并证明了对高维行为时间序列的适用性。最后,我们概率地从猴子到达任务中的神经种群活动中解释运动轨迹,并查询同一VAE的编码神经活动的编码。我们的方法为神经和行为数据的关节维度降低和学习条件分布提供了统一的观点,这将允许将神经科学中的常见分析扩展到当今的高维多模式数据集。
超表面是超材料的二维对应物,它已展示出前所未有的能力,可以在单个平面设备中操纵电磁波的波前。尽管该领域取得了各种进展,但超表面所实现的独特功能是以结构复杂性为代价的,导致传统超表面设计的参数扫描非常耗时。尽管人工神经网络提供了一个灵活的平台来显著改善设计过程,但当前的超表面设计仅限于生成定性场分布。在本研究中,我们证明,通过结合串联神经网络和迭代算法,可以用定量场分布克服超表面设计的先前限制。作为原理验证示例,通过设计的网络架构预测的超透镜具有多个焦点,具有相同/正交的偏振状态,以及精确的强度比(定量场分布),并通过数值计算和实验证明。独特而强大的超表面设计方法将加速开发可应用于成像、检测和传感的高精度功能设备。
我们研究了铁磁异常的约瑟夫森连接的开关电流分布,该连接构成线性增加的偏置电流。我们的研究发现了开关电流分布的位置与关键系统参数之间的显着相关性,例如自旋 - 轨道耦合的强度和吉尔伯特阻尼参数。这表明可以通过实验测量直接确定这些参数。通过对噪声,磁化,相动态和开关电流分布的统计特性之间的相互作用进行全面分析,我们加深了对这些有趣的低温旋转型旋转设备的理解。这些发现有可能在量子计算体系结构和信息处理技术领域的应用中进行应用。
未来的气候投影揭示了全球海洋生物多样性的重大极点转移。但是,这些模型仅通过推断物种基本环境细分市场的位置而制作(即sensu hutchinson)无海洋或地理限制。尽管已经在现场验证了SDM的结果,而各种物种已经在分布中进行了纬度转移,但需要一个重要的海洋限制才能具有牢固的预测。该博士学位的主题将是在Aquamaps/Aquax Consortium中发展一个新物种分布工作流(最好在R上),以捕获对流和扩散物种分布的极点移位,并重新评估全球生物多样性分布的未来变化。
mirthe coenen a, *,分组Jan Biesels A,Charles DeCarli B,Evan F. Fletcher B,Pauline M. Mallard B,Alzheimer the S Direnas Season 1,fre ,Jooske M.F.Boomsma G,Christopher P.L.H.Chenh,I,Peter Dal-Bianco J,Anna Dewenter K,Marco Duning K,L,Christian Enzer,N,G。Exalto A,Nicolai Franzumer K,O,O,O,,O,,Onno give,,,,,,地,,,,地,,地,,,,地,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,nicoLaier k,of。 H,R,Edith Courter S,T,Huiberdina L. Cook You,Andrea B. Maier I,V,W,W,X,Cheryl R. Foeper,Yanss W. Paterson E,Ross W. Paterson E。 Pineburg G,Anna Rubinki K,Reinholled Schmidt S,Jonathan M. Scott和,Catherine F. Slattery E,Eric E. Smith X,Carole H. Sudre AA,AB,AB,Rebecca M.E. 显然是y,ad,berg y,z,s s,west M. of,narayanaswamy venketasubramanian i Matthis Biest A,Hugo J. Kuive AHChenh,I,Peter Dal-Bianco J,Anna Dewenter K,Marco Duning K,L,Christian Enzer,N,G。Exalto A,Nicolai Franzumer K,O,O,O,,O,,Onno give,,,,,,地,,,,地,,地,,,,地,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,nicoLaier k,of。 H,R,Edith Courter S,T,Huiberdina L. Cook You,Andrea B. Maier I,V,W,W,X,Cheryl R. Foeper,Yanss W. Paterson E,Ross W. Paterson E。Pineburg G,Anna Rubinki K,Reinholled Schmidt S,Jonathan M. Scott和,Catherine F. Slattery E,Eric E. Smith X,Carole H. Sudre AA,AB,AB,Rebecca M.E.显然是y,ad,berg y,z,s s,west M. of,narayanaswamy venketasubramanian i Matthis Biest A,Hugo J. Kuive AH
量子生成建模(QGM)依赖于准备量子状态并从这些状态中生成样品,作为隐藏或已知的概率分布。作为来自某些类别的量子状态(电路)的分布本质上很难经典样本,QGM代表了量子至上实验的出色测试床。此外,生成任务与工业机器学习应用越来越重要,因此QGM是证明实用量子优势的有力候选人。但是,这要求对量子电路进行培训以代表与工业相关的分布,并且相应的培训阶段在实践中为当前的量子硬件具有广泛的培训成本。在这项工作中,我们根据接受有效梯度计算的特定类型的电路提出了对QGM的经典培训方案,同时仍然难以采样。特别是我们考虑瞬时量子多项式(IQP)电路及其扩展。在时间复杂性,稀疏性和抗调解属性方面显示了它们的经典模拟性,我们开发了一种经典的可拖动方式来模拟其输出概率分布,从而使经典的培训允许经典培训到目标概率分布。与使用经典采样时不同,来自IQP的相应量子采样可以有效地进行。我们使用概率分布在常规台式计算机上最多30个QUAT的概率分布来证明IQP电路的端到端训练。当应用于工业相关的分布时,这种经典培训与量子采样的组合代表了在嘈杂的中间规模量子(NISQ)时代获得优势的途径。
陈述了这两点,我们最后可以注意到,获得的 Fisher 信息度量 ⟨· , ·⟩ FIM 횺 随 횺 平滑变化。这使得从统计模型过渡到黎曼几何成为可能:微分几何的一个分支,研究具有光滑局部内积(称为黎曼度量)的光滑流形。这种框架确实适用于参数统计模型,因为它使我们能够研究配备 Fisher 信息度量的参数空间的几何形状。由此产生的黎曼几何通常称为 Fisher-Rao 信息几何。回到我们的中心例子,我们已经介绍了足够多的元素来明确本章的标题“CES 分布的 Fisher-Rao 几何”更准确地说是“由中心圆形复椭圆对称分布的 Fisher 信息度量引起的 Hermitian 正定矩阵(协方差矩阵)的黎曼几何”,这将在下一节中研究。
这项研究建立了一种新的方法,可以研究加速的衰老测试是否可以在短时间内准确地对现实的细胞衰老进行建模,同时还可以维持所涉及的衰老机制的一致性。作为效率和一致机制之间的权衡,加速衰老的应用需要仔细选择应力因素,以确定操作范围和与衰老相关的应激因素的重要性。基于为43个月的日历老化测试和10个月循环老化测试设计的三个级别的主要应力因素,这项工作旨在应力排名,并指示用于商业LFP/C电池的合适的操作间隔,并采用了两种最受欢迎的电池寿命分布,即电池,即logormormal and weibull。锂离子电池的统计分布是通过非线性混合效应(NLME)模型的排放能力损失来实现的。结果证明,对数正态是首选模型,并且随着更深的衰老,尤其是在日历老化中,右链的Weibull变得更加明显。得出了由一致加速因子引导的分布参数的进化定律。基于寿命样本的NLME模型的似然比参数bootstrap方法始终产生,以高于47.5℃的温度来测试条件,而循环衰老的平均收费(SOC)高于72.5%的平均电荷(SOC)会导致不同的生活行为。相比之下,SOC水平和较高温度的组合不会导致日历老化机制的变化。温度是最显着的应力,其次是温度耦合的循环深度和SOC水平。此方法可以提供参考,以制定合理的测试计划,以检测电池的性能以更准确地预测其生活。